Jata Integration (NADI) System

er Manual

00K Version: 0.7.0

ps://nadi-system.github.io/

aurav Atreya
2025-06-27

https://nadi-system.github.io/

Contents

IR o = - T o 1
2. ACKkNoWIedgementscuiuiiniiiiiiiiiiiii ittt ittt ittt i it 2
2 PR 0 o T 1 o 2
B WY N A2 .. itititi ittt tietaetaetansesanseesenseassnssassassossossessenssnssns 3
3.1, Why use NADIL SyStem? ..ottt ettt et e eenns 3
4. Who this boOK iS fOrcciiiiiiiiiiii ittt ittt tiiiteeeeteteeeeeacncasasesaannns 6
5. How to use this bOOK ..ottt it ittt iiteteteteteresasansncncncnnnnes 7
6. HOW t0 Gt ..ottt iiiiiiieiiiieteeiateeeneesensesensosensasencesencasancnsananns 9
6.1. Works using Nadi SYyStemottt e e i 9
7. Nadi System SetUPoviiiiiiiiii ittt ittt ittt ittt i it 11
728 IR 1 Yo 11 [o 11
7.2, InStallation ..o e e 16
7.3, PIUGINS e e e 21
8. NetWork DeteCtionociiiiiiiiiiiiiiiiiiiiieeetetteteresesesesasasesesesascannnnns 23
S 0 IR NN = T L) 23
8. 2. EXAMPIe L 24
9. NetWOrK ANalYSiscuiuiiiiiiiiiiiii ittt ittt ittt tieeitatateasneensasanenns 31
R I 0T = @0 o =Y 0 31
B0 A - 1] 32
0.3, AL DULES ottt e e e 35
B N Yo 37
2 T 1 =Y 71 o S 38
0. B, EXPIeS S ON ettt e 40
0.7, SHriNG TemMPlate ..ttt e e 42
0.8. NOE FUNCHION L.t e e e et ettt ettt aeiaans 43
0.9. NetWOrK FUNCHION ...t e e ettt et e e eiaeaas 45
9.10. Cross Context Functionsand Variables ..., 47
0.1, PIUGINS ettt et et e e e e 50
I 7 W [o LT gl (<= Vo 1o o 50
10. Learn by EXamPles ..ottt ittt ietieettatasneenesasasensnsans 52
10,7, AT DULES ottt e e e e e e e 52
10.2. CoNtrol FlOW .. e e e ettt et 54
L1018 T o ¥ =Y e 1 o] 56
10.4. CoUNTING NOGES ..ttt e e e e et ie e aeas 60
10.5. CUMUIATIVE SUM L. e e e e e e et ettt ettt 64
10.6. IMPOrt EXPOrt FIleS ...ttt e e e e e i 66

1.

12.

13.

14.

15.

16.

17.

10.7. StriNg TeMIPIateS ..ttt e et et et 71

Nadi Extension Capabilitiescccieiiiiiiiiiiiiii ittt iiiii i aeaes 72
List Of All FUNCLIONSciiiiiiiiiii ittt it iieeteeeeeteeeeneeacncncncnsnsanans 73
Python Libraryc.iuiiiiiiiiii ittt ittt itittetattataseatasensanansans 74
1 T R V= T L 74
13.2. Differences with Task Systemo e 74
13,3, PIUGINS ottt et e e 76
1304, EXAMIPIOS Lt 78
Plugin Developer GUIdecccoiiiiiiiiiiiiiiiiiiiiiiiitieittestsasessasansens 79
14.1. Executable PIUGINS e 79
14.2. Compiled PIUGINS e e 81
8L =T g 1=y =] =Y o Lol 20
15,1, EXAMIPIE USAQE . ettt ettt et e e 90
Internal PIUGinsSoviiiniiiiii ittt ittt iiteeetetaeasesnsessesasensnnnns 102
10, 1. AT DULES .t e e e e e e e e 103
1307 @] o 0 = T 114
1S T05 A e 1 1=t f Lo 1 1 117
TR T o < 119
16,5, DBDUG ottt e e e 132
ST 1 T [134
TR 0 =T o | <G 138
16.8. RN i e e e e e e e e e e e e e 141
IS TR S TR = g = 144
16.10. TablE oo e 146
ST TP T ¢ =TS = 147
10,72, ViSUAIS Lttt e e e e e e e e e 149
External PIUQinSc.iuiiniiiiii ittt ittt ittt te et iseeneneanes 151
725 I O -1 01 151
17.2. Data Fill ..o e e e e e e 152
L0 TR = o] T 153
L =Y Ty o o 155
17,5, GNUPIOT .. e 155
17,6, GraPRiCS o e e 156
17,7, GraPVIZ oo e e e e e 160
0 < T 1 1Y/ P 160
17,9, GIS o e e 161
1700, PrintNOGe . e e e e e e e e 163
1707, SEreamME oW .o e e e e e 164

18. Developer Referenceccviuiiiiiiiiiiiiiiiiiiiiiiieeiieseatasesassesassnsassnns 165

19.

20.

S TR O B =Y = I Ut = 166
<207 A\ T [166
18.3. NEIWOIK ..o e et 166
IS T T Ty 1= 168
18.5. StriNg TeMIPIateS ..ttt e e e e e 168
18.6. TablES ot e 174
18.7. File Templates ...ttt e e e e e 176
188, TaASKS ettt e e 176
18.9. NOAE FUNCHIONS o\ttt e e e ettt e e e 177
18.10. NetwOork FUNCLIONS ...ttt 177
Developer Notes and Future Directionc..ciiiiiiiiiiiiiiiiiiiiiiiinnnnns. 179
19.1. DEVelOPEr NOTES ..ttt ittt ettt it e 180
19.2. Writing this BOOKen e 182
Future Ideas toImplementcooiiiiiiiiiiiiiiiiiiiiiiienearerasasasasensass 189
20.7. Interactive PIOLSot e 189

1. Preface

NADI is currently under active development. As such does not have stable API yet, and many
of the concepts explained in this book might not work yet.

If you still want to use it for your projects, please do them with the knowledge that the API
might change in next versions, and you might have to keep it updated until the system is
stable. If you have any problems with the program, or would like some new features, please
make an github issue, we will try to accomodate it if it fits within the scope of the program.

2. Acknowledgements

Thank you everyone who has been consistently testing this software throughout the devel-
opment and providing feedbacks. Specially the members of Water System Analysis Lab in
University of Cincinnati.

2.1. Funding
Grant: #W912HZ-24-2-0049 Investigators: Ray, Patrick 09-30-2024 - 09-29-2025 U.S. Army

Corps of Engineers Advanced Software Tools for Network Analysis and Data Integration
(NADI) 74263.03 Hold Level:Federal

3. Why NADI?

Network Analysis amd Data Integration (NADI) System is a system of programs made to
make network based data analysis easier and more accessible.

It consists of multiple tools, that perform two important functions, network detection and
network analysis. First part is done throuh the Geographic Information (GIS) Tool, while
the second part is done using a Domain Specific Programming Language (DSPL) called
NADI Task system.

— =

~ —~ =)= —
NHDPIus . ;I J/j E' =
(NID o = <
cagesshp ygp H c%" I — ’2—14
= = =
Download Network Detection Z | Post-Process
Exlernalj\NADI GIS A NABI\GIS S I A
o v < v v | v O
Start Pre-Process Network Analysis | End
External + NADI GIS) — I
Plugins Pl= |
R I
I

3.1. Why use NADI System?

Hydrologic modeling involves the integration of diverse data to simulate complex (and often
poorly understood) hydrological processes. The analysis of complex hydrological processes
often requires using domain specific calculations, and the visual representation requires
the creation of custom maps and plots. Both of which can be a repetitive and error-prone
processes, diverting time from data interpretation and scientific inquiry. Efficient methods
are needed to automate these tasks, allowing researchers to focus on higher-level analysis
and translation of their findings.

Current solution to that problem is to either use general purpose programming languages
like Python, R, Julia, etc., or use domain specific software packages to increase the reliability
of the tasks. Domain Specific Programming Languages (DSPLs) like the NADI Task system
provides better syntax for domain specific tasks, while also are general purpose enough for
users to extend it for their use cases. NADI System is trying to be the software framework
that can connect those two by integrating with various softwares and providing a intuitive
way to do network based data analysis.

Some example functionality of NADI system includes:

* Detection of upstream/downstream relationships from stream network,

* Network based programming using an extensible custom programming language,
+ Interactive plots and reports generation,

+ Import/export from/to various GIS data formats, etc.

3.1.1. Network Based Data Analysis

If you have data that are network based, like in case of data related to points in a river. NADI
provides a text representation of the network that can be manually created with any text
editor, or through NADI GIS tool.

3.1.2. Task System

The Domain Specific Programming Language (DSPL) developed for network analysis in NADI
makes network analysis simple and intutive. So, it is easier to understand, interpret and
catch mistakes. While the NADI IDE has network visualization tools built in that can help you
visualiza the network attributes for visual analysis.

For example, implementing “cumulative sum of streamflow” in nadi:

node<inputsfirst>.cum sf = node.streamflow + sum(inputs.streamflow);

The trying to do this in Python while making sure input nodes are run before the output. So
you might have to write a recursive algorithm like this:

def cum sf(node):
node.cum_sf = node.streamflow + sum([cum sf(i) for i in node.inputs()])
return node.cum_sf

cum sf(network.outlet())

While a common mistake people might make is to write a simple loop like this:

for node in network.nodes():
node.cum_sf = node.streamflow + sum(
[i.streamflow for i in node.inputs()]

Which doesn't make sure input nodes are run before output in this case, and can error out
when some variables are not present. NADI provides special syntax for cases where you can
make sure variables exist before running something.

3.1.3. Extensibility

NADI has two types of plugin systems, which means users can write their own analysis in
any programming language and have it interact with NADI through attributes, or they can
write it in rust and have even more direct interaction.

4. Who this book is for

This book has sections explaining the concepts of the NADI system, its developmental notes,
user guide and developer guide.

Hence it can be useful for people who:

* Want to understand the concepts used in NADI,

+ Want to use NADI system for their use case,

+ Want to develop plugin system for NAD],

* Want to contribute to the NADI system packages, etc.

Although not intended, it might include resources and links to other materials related to
Rust concepts, Geographical Information System (GIS) concepts, Hydrology concepts, etc.
that people could potentially benefit from.

5. How to use this book

You can read this book sequentially to understand the concepts used in the NADI system.
And then go through the references sections for a specific use cases you want to get into
the details of.

If you are in a hurry, but this is your first time reading this book, at least read the
Core Concepts, then refer to the section you are interested in. Learn by Example

5.0.1. Code Blocks

The code blocks will have example codes for various languages, most common will be string
template, task, and rust codes.

String template and task have custom syntax highlights that is intended to make it easier
for the reader to understand different semantic blocks.

For task scripts/functions, if relevant to the topic, they might have Results block following
immediately showing the results of the execution.

For example:

network load file("./data/mississippi.net")
node[ohio] render("{ NAME:case(title)} River")

Results:

{

ohio = "Ohio River"

Task and Rust code block might also include lines that are needed to get the results, but
hidden due to being irrelevant to the discussion. In those cases you can use the eye icon
on the top right side of the code blocks to make them visible. Similarly use the copy icon to
copy the visible code into clipboard.

5.0.2. String Template Syntax Highlight

The syntax highlight here in this book makes it so that any unknown transformers will be
marked for easy detection to mistakes.

This shows var = {var:unknown()}, { var:case(title)}

Besides this, the syntax highlight can help you detect the variables part (within {3}), lisp
expression (within =()), or commands (within $()) in the template.

Note: commands are disabled, so they won't run during template rendering process. But
if you are rendering a template to run as a command, then they will be executed during
that process.

6. How to Cite

The sections below show you a bibliography entry in ASCE format, and BibTeX format that
you can copy.

6.0.1. Journal Papers: TODO

The papers are currently still being worked on, and will be added here when they are
published.

6.0.2. This book

You can cite the link to this book as follows Make sure to replace Accessed Data by today’s
date.

Atreya, G. 2025. “Network Analysis and Data Integration (NADI).” Accessed May 1, 2025.
https://nadi-system.github.io/.

@misc{PrefaceNetworkAnalysis,
title = {Network {{Analysis}} and {{Data Integration}} ({{NADI}})},
author = {Atreya, Gaurav},
year = {2025},
url = {https://nadi-system.github.io/},
urldate = {2025-05-02}

6.1. Works using Nadi System

Atreya, G., G. Mandavya, and P. Ray. 2024. “Which came first? Streamgages or Dams: Diving
into the History of Unaltered River Flow Data with a Novel Analytical tool.” H51L-0865.

@inproceedings{atreyaWhichCameFirst2024,

title = {Which Came First? {{Streamgages}} or {{Dams}}: {{Diving}} into the
{{History}} of {{Unaltered River Flow Data}} with a {{Novel Analytical}} Tool},

shorttitle = {Which Came First?},

booktitle = {{{AGU Fall Meeting Abstracts}}},

author = {Atreya, Gaurav and Mandavya, Garima and Ray, Patrick},

year = {2024},

month = dec,

volume = {2024},

https://nadi-system.github.io/

pages = {H51L-0865},
urldate = {2025-06-03},
annotation = {ADS Bibcode: 2024AGUFMH51L.0865A}

10

7. Nadi System Setup

7.1. Introduction

NADI is group of software packages that facilitate network analysis and do data analysis on
data related to network/nodes.

NADI System consists of:

Tool Description

Tool Description

NADI GIS Geographic Information (GIS) Tool for Network Detection

NADI Task System [Domain Specific Programming Language

NADI Plugins Plugins that provide the functions in Task System

NADI library Rust and Python library to use in your programs

NADI CLI Command Line Interface to run NADI Tasks

NADI IDE Integrated Development Environment to write/ run NADI Tasks

The github repositories consisting of source codes:

Repo Tool

nadi-gis Nadi GIS

nadi-system Nadi CLI/ IDE/ Core
nadi-plugins-rust | Sample Plugins
nadi-book Source for this Nadi Book

7.1.0.1. NADI GIS

Geographic Information (GIS) Tool for Network Detection. The main purpose of the NADI
GISis to find the network connectivity between a set of points using a stream network (which
can be developed from elevation models, or downloaded from national databases).

NADI GIS can be used as a terminal command or QGIS plugin, refer to Section 7.2.2.3 for
how to install it.

11

https://github.com/Nadi-System/nadi-gis
https://github.com/Nadi-System/nadi-system
https://github.com/Nadi-System/nadi-plugins-rust
https://github.com/Nadi-System/nadi-book

7.1.0.2. NADI Task System

Task System is a Domain Specific Programming Language (DSL) that is designed for river
network analysis. This is the main core of the network analysis. This is included when you
install NADI as a library, CLI or GUI.

7.1.0.3. NADI Plugins

The functions available to call in the task system comes from plugins. There are many
internal plugins with core functions already available, while users can load their own plugins
for other functions.

Refer to the plugins section of the book for more details on how to use plugins, how to write
them and what to keep in mind while using them.

7.1.0.4. NADI libraries

Rust and Python library to use in your programs. Rust library nadi core is available to
download/use from cargo with the command cargo add nadi core.

While Python library requires you to clone the repo and build it with maturin (for now). Future
plan for it includes publishing it in pypi.

7.1.0.4.1. Rust Libraries
If you are not writing your own rust programs or plugins, you can skip this section.

There are three rust libraries:

Library Use

nadi_core Core library with data types, and plugin structure
nadi_plugin Rust Procedural macro library to write nadi plugins
string template plus | Library for string templates with variables

Everything is loaded by nadi_core so you don’t need to load them separately.
7.1.0.4.2. NADI Python

While using NADI from python library, you only have access to nadi data types (Node, Net-
work, etc), and the plugin functions, which are enough for most cases as python language

12

syntax, variables, loops etc will give you a lot of flexibility on how to do your own analysis.
The python module is structured as follows:

nadi [contains Node, Network, etc]
+-- functions
| +-- node [contains node functions]
| +-- network [contains network functions]
| +-- env [contains env functions]
+-- plugins
+-- <plugin> [each plugin will be added here]
| +-- node [contains node functions]
| +-- network [contains network functions]
| +-- env [contains env functions]
+-- <next-plugin> and so on ...

The functions are available directly through functions submodule, or through each plugin
in plugins submodule. An example python script looks like this:

import nadi
import nadi.functions as fn

net = nadi.Network("data/ohio.network")
for node in net.nodes:
try:
= int(node.name)
node.is usgs = True

print(fn.node.render(node, "Node { NAME} is USGS Site"))
except ValueError:

node.is usgs = False

This code shows how to load a network, how to loop through the nodes, and use python
logic, or use nadi functions for the node and assign attributes.

More detail on how to use NADI from python will be explained in NADI Python chapter.
7.1.0.5. NADI CLI

Command Line Interface to run NADI Tasks.

This can run nadi task files, syntax highlight them for verifying them, generate markdown
documentations for the plugins. The documentations included in this book (Function List
and each plugin’s page like Attributes Plugin attrs) are generated with that. The documen-

13

plugins/index.md
plugins/attrs.md
plugins/attrs.md

tation on each plugin functions comes from their docstrings in the code, please refer to how
to write plugins section of the book for details on that.

The available options are shown below.

Usage: nadi [OPTIONS] [TASK FILE]

Arguments:
[TASK FILE] Tasks file to run; if "--stdin® is also provided this runs before
stdin

Options:

-C, --completion <FUNC TYPE> 1list all functions and exit for completions
[possible values: node, network, env]

-c, --fncode <FUNCTION> print code for a function

-f, --fnhelp <FUNCTION> print help for a function

-g, --generate-doc <DOC DIR> Generate markdown doc for all plugins and functions

-1, --list-functions list all functions and exit

-n, --network <NETWORK FILE> network file to load before executing tasks

-p, --print-tasks print tasks before running

-P, --new-plugin <NEW PLUGIN> Create the files for a new nadi plugin
-N, --nadi-core <NADI CORE> Path to the nadi core library for the new
nadi plugin

-s, --show Show the tasks file, do not do anything

-S, --stdin Use stdin for the tasks; reads the whole stdin
before execution

-r, --repl Open the REPL (interactive session) before exiting

-t, --task <TASK STR> Run given string as task before running the file

-h, --help Print help

-V, --version Print version

7.1.0.6. NADI IDE

NADI Integrated Development Environment (IDE) is a Graphical User Interface (GUI) for the
users to write/ run NADI Tasks.

As seenin the image below, IDE consists of multiple components arranged in a tiling manner.
You can drag them to move them around and build your own layout. When you start IDE it
suggests you some layouts and what to open. You can use the buttons on the top right of
each pane to:

+ change pane type

+ vertically split current pane

* horizontally split current pane

14

« fullscreen current page/ restore layout if it's fullscreen
* close current pane

§ TextEditor Text Editor vE m S ox

e Solarized Dark ¥

minsize = maxsize

5879.026, 98.2692

5879.026, 98.2692
500 .
500 .
500 .

3

Node[2]: 03228689

INDEX Integer
/home/gaurav/work/nadi-project/codes/nadi-system/nadi-ide/examples/scioto.tasks 2

X LEVEL Integer

Home Book GitHub 2

NAME String
"03228689"

Set the node size of the nodes based on the attribute value
ORDER Integer

1

y Arguments

« attrs: '& [f64]' => Attribute values to use for size scaling
« minsize: 'f64' = 4.0 =>minimum size of the node

+ maxsize: 'f64' = 12.@=>maximum size of the node

It has the following components:
7.1.0.6.1. Text Editor
Open text files, edit and save them.

It comes with syntax highlighting for most languages. And custom highlight for tasks and
network files.

For Tasks file, it can also show you function signatures on top so you can write tasks easily,
knowing what arguments the function needs and what the default values are.

While open inside IDE, it can also run the tasks by sending them to the terminal, or search
help documentations on functions. Hover over the buttons on the top row to see which
button does what, and the keyboard shortcut to use them as well.

7.1.0.6.2. Terminal

Terminal is there so you can run NADI in a interactive session. Read Eval Print Loop (REPL)
of NADI here is meant mostly to be used inside the IDE to evaluate the tasks from editor,
but you can open it independently as well.

15

7.1.0.6.3. Function Help

This is a GUI with the list of all available plugin functions. You can expand the sidebar on left
to search and browse functions. You can filter by type of function (node, network, env) with
the buttons. When you click a function you can read its documentation on the right side.

Capabilities of the iced GUI libraries are limited right now, so you cannot select or copy
text from the help. Please refer to the documentation online to do that. Or generate the
documentation locally using nadi-cli tool.

7.1.0.6.4. Network Viewer

This is a pane where network is visualized, this is a very basic visualization to see the
connections and is not optimized for drawing. Please avoid using this pane (making it visible)
in case of large networks as it takes a lot of computation to draw this each frame.

7.1.0.6.5. Attribute Browser

When you click on a node on Network Viewer it will open/update showing the attributes
of that node. There is no way to edit the attributes from here, which is intensional design
as attributes should be assigned from tasks so that they are reproducible. For temporary
assignments use the terminal.

7.1.0.6.6. SVG Viewer

This is a basic utility that can open a SVG file from disk and visualize it. You can click the
refresh button to re-read the same file. This is intended for a quick way to check the SVG
saved/exported from tasks. This is not a full fledge SVG renderer, so open them in image
viewers or browsers to see how it looks.

7.1.1. Trivia

* Nadi means River in Nepali (and probably in many south asian languages).

* First prototype of NADI was Not Available Data Integration, as it was meant to be an
algorithm to fill data gaps using network information, but it was modified to be more
generic for many network related analysis.

7.2. Installation

Nadi System is a suite of software packages each have different installation methods. Some
of the packages are uploaded to crates.io (rust) and pypi (python). For others, you can either

16

get the compiled binaries from the Releases page of the github repo [windows]. Or you can
get the source code using git, and using cargo build the packages [all OS].

7.2.0.1. Packages

For nadi-py you can use pip:

pip install nadi-py

For nadi-cli you can use cargo:

cargo install nadi

7.2.1. Downloading Binaries

Goto the repo of each component and refer to the releases section for binaries of different
versions.

* nadi-system binaries

» nadi-gis binaries

* plugins binaries

To setup the nadi-systm to load the plugins you have to place them inside the directory
included in the NADI PLUGIN DIRS environmental variable. Refer to your Operating System’s
documentation on how to set environemental variables.

The binaries should be able to run directly without needing extra steps. If you get a security
warnings because the binaries are not signed, you might have to ignore it.

7.2.2. Building from Source

This is currently the preferred way of installing nadi-system (and nadi-gis for Linux and
MacOS). Although it includes a bit more steps this makes sure the compiled program is
compatible with your OS.

7.2.2.1. Prerequisites

The prerequisites for building from source are:

* git [Optional]: to clone the repo, you can directly download zip from github
* cargo: To build the binaries from source.

* gdal [Optional]: Only for nadi_gis binary and plugin.

17

https://github.com/Nadi-System/nadi-system/releases
https://github.com/Nadi-System/nadi-gis/releases
https://github.com/Nadi-System/nadi-plugins-rust/releases

To install git refer to the instructions for your operating system from the official page.

For cargo follow the instructions to install rust toolsets for your operating system from the
official page

Installing gdal can be little complicated for windows. For Linux, use your package manager
to install gdal and/or gdal-dev package. Mac users can also install gdal using homebrew. For
windows, follow the instructions from official website, after installation you might have to
make some changes to environmental variables to let cargo know where your gdal binaries/
header files are for the compilation to be successful. More details will be provided in the
NADI GIS section.

If you use Linux or Mac (with homebrew), then the installation of prerequisites should be
easy. But if you do not have the confidence to setup gdal for compiling nadi gis use the
binaries provided for them from the previous steps.

7.2.2.2. NADI System

It will build the binaries for nadi, nadi-ide, nadi-help, nadi-editor, etc. nadi is the command
line interface to run nadi tasks, parse/validate syntax etc. While nadi-ide is the program to
graphically develop nadi tasks and run them.

Assuming you have git and cargo,

git clone https://github.com/Nadi-System/nadi-system
cd nadi-system
cargo build --release

To run one of the binary from nadi system, use the command cargo run with binary name.

For example, the following will run the nadi-ide:

cargo run --release --bin nadi-ide

The compiled binaries will be saved in the target/release directory, you can copy them and
distribute it. The binaries do not need any other files to run.

The plugins files if present in the system are automatically loaded from NADI PLUGIN DIRS
environmental variable. Look into installing the plugin section below.

18

https://git-scm.com/downloads
https://www.rust-lang.org/tools/install
https://brew.sh/
https://gdal.org/en/stable/download.html#windows

Note: all programs will compile and run in Windows, Linux, and MacQOS, while only nadi-cli
and mdbook-nadi will run in Android (tmux). nadi-ide and family need the GUI libraries that
are not available for android (tmux) yet.

7.2.2.3. NADI GIS

NADI GIS uses gdal to read/write GIS files, so it needs to be installed. Please refer to gdal
installation documentation for that.

7.2.2.3.1. Windows

First download compiled gdal from here:
* https://www.gisinternals.com/sdk.php Then download clang from here:
* https://github.com/llvm/llvm-project/releases

Extract it into a folder, and then set environmental variables to point to that:
* GDAL_VERSION: Version of gdal e.g. ‘3.10.0'

* LIBCLANG_PATH: Path to the lib directory of clang

* GDAL HOME: Path to the gdal that has the subdirectories like bin, 1ib, etc.

You can also follow the errors from the rust compilers as you compile to set the correct
variables.

Finally you can get the source code and compile nadi-gis with the following command:

git clone https://github.com/Nadi-System/nadi-gis
cd nadi-gis
cargo build --release

This will generate the nadi-gis binary and gis.dll plugin in the target/release folder, they
need to be run along side the gdal shared libraries (.dl1s). Place the binaries in the same
folder as the dlls from gdal and run it. To use the gis.dll plugin from nadi, nadi-ide, etc.
same thing applies there, those binaries should be run with the gdal’s di1s to be able to load
the gis plugin.

7.2.2.3.2. Linux and Mac

Assuming you have git, cargo, and gdal installed in your system you can build it like this:

19

https://gdal.org/en/stable/download.html
https://gdal.org/en/stable/download.html
https://www.gisinternals.com/sdk.php
https://github.com/llvm/llvm-project/releases

git clone https://github.com/Nadi-System/nadi-gis
cd nadi-gis
cargo build --release --features bindgen

The bindgen feature will link the nadi-gis binary with the gdal from your system. So that you
do not have to distribute gdal with the binary for your OS.

If you do not have gdal installed in your system, then you can still build the nadi-gis without
the bindgen feature. This will still require gdal to be available and distributed with the binary.

cargo build --release

7.2.2.3.3. QGIS Plugin

The nadi-gis repo also contains the QGIS plugin that can be installed to run it through QGIS.
The plugin will use the nadi-gis binary in your PATH if available. And it also contains the
nadi plugin that can be loaded into the nadi system to import/export GIS files into/from the
system.

You can download the zip file for plugin from releases page, and use the “Install from Zip”
option on QGIS plugins tab. Or copy the nadi directory inside qgis to your python plugin
directory for qgis.

Refer to the QGIS plugins page for more instructions. In future we are planning on publish-
ing the plugin so that you can simply add it from QGIS without downloading from here.

7.2.2.3.4. Nadi GIS Plugin

The nadi plugin on this repo provides the functions to import attributes, geometries from
GIS files, and export them into GIS files.

7.2.2.4. Nadi Plugins

Out of the two types of plugins, the executable plugins are just simple commands, they do
not need to be installed along side nadi, just make sure the executables that you are using
from nadi can be found in path. A simple way to verify that is to try to run that from terminal
and see if it works.

The compiled plugins can be loaded by setting the NADI_PLUGIN DIRS environmental variable.
The environment variable should be the path to the folder containing the nadi plugins

20

https://docs.qgis.org/3.40/en/docs/training_manual/qgis_plugins/fetching_plugins.html

(in .dly, .so, or .dylib formats for windows, linux and mac). You can write your own plugins
based on our examples and compile them.

Officially available plugins are in the nadi-plugins-rust directory.

Assuming you have git and cargo,

git clone https://github.com/Nadi-System/nadi-plugins-rust
cd nadi-gis
cargo build --release

The plugins will be inside the target/release directory. Copy them to the NADI PLUGIN DIRS
directory for nadi to load them.

You can take any one of the plugins as an example to build your own, or following the plugin
development instructions from the plugins chapter.

7.3. Plugins

Plugins allow users to extend the use case of the Nadi System by adding more functions or
scripts. User are expected to only use plugins from trusted sources, or develop it in-house.
Although the compiled plugin functions have their code exposed in their documentation for
the transparency purposes even if the source code is not available, always make sure the
plugin you run are not malicious.

There are two types of nadi plugins. Compiled plugins (shared libraries) are loaded dynam-
ically from shared libraries, while executable plugins are called as shell commands. Refer to
of core concepts for more details.

7.3.0.1. Compiled Plugins

Compiled plugins are shared libraries (.so in linux, .d1l in windows, and .dylib on macOS).
They can be generated by compiling the nadi plugin in rust, or you can download the correct
plugin for your OS and nadi_core version from the plugin repositories. It is recommended
to only use plugins from trusted source.

To setup the nadi-systm to load the compiled plugins you have to place them inside the
directory included in the NADI_PLUGIN DIRS environmental variable. Refer to your Operating
System’s documentation on how to set environemental variables.

21

The compiled plugins are loaded when NADI is starting up, there is no way to hot load or
reload the plugins, so you need to reopen the nadi program itself (CLL, IDE, etc) if you want
to load new/updated plugin functions.

Once the plugins are loaded, the functions are directly available from the nadi task system,
they'll act similar to the internal plugin functions.

7.3.0.2. Executable Plugins

Executable plugins are terminal commands, you set it up as you'd set any other terminal
programs, by making sure the program is in PATH and can be executed from terminal. Linux
and Mac do them mostly by default, while in Windows you might have to check the box
saying something along the lines of “include this in path” during installation, or manually
edit the PATH in “Environment Variables”.

For example, if you want to call python scripts, make sure you can run python --version in
terminal and get a response.

You can also check it using the command function:

network command("python --version", echo=true)
network command("Rscript --version", echo=true)
network command("julia --version", echo=true)

Results:

$ python --version
Python 3.13.3

$ Rscript --version
Rscript (R) version 4.5.1 (2025-06-13)

$ julia --version
julia version 1.11.5

Here we can see, the commands that ran successfully and returned a version are valid.

To write scripts and run them from nadi refer to section on Plugin
Developer Guide.

22

8. Network Detection

8.1. Nadi GIS

Nadi GIS is available as a CLI tool and QGIS plugin, the CLI tool has the following functions:

Usage: nadi-gis [OPTIONS] <COMMAND>

Commands :
nid Download the National Inventory of Dams dataset
usgs Download data from USGS NHD+
layers Show list of layers in a GIS file
check Check the stream network to see outlet, branches, etc
order Order the streams, adds order attribute to each segment
network Find the network information from streams file between points
help Print this message or the help of the given subcommand(s)
Options:

-q, --quiet Don't print the stderr outputs
-h, --help Print help

The important functions are:

+ Download NID and USGS NHD+ data,

* Check stream network for validity of DAG (Directed Acyclic Graph) required for NADI,
+ Stream ordering for visual purposes,

* Network detection between points of interest using the stream network

You can use the help command for each one of the subcommand for more help. For
example, usgs subcommand’s help using nadi-gis help usgs gets us:
Download data from USGS NHD+
Usage: nadi-gis usgs [OPTIONS] --site-no <SITE NO>
Options:
-s, --site-no <SITE_NO>

USGS Site number (separate by ',' for multiple)

-d, --data <DATA>
Type of data (u/d/t/b/n)

23

[upstream (u), downstream (d), tributaries (t), basin (b), nwis-site (n)]
[default: b]

-u, --url
Display the url and exit (no download)

-v, --verbose
Display the progress

-0, --output-dir <OUTPUT DIR>
[default: .]

-h, --help
Print help (see a summary with '-h')

8.1.1. NADI QGIS

The QGIS plugin for nadi has a subset of the CLI functionality. It can be accessed from the
Processing Toolbox.

= Vector tiles

- Vector
+ Check Streams
& Download USGS Data
\¢ Find Connections
¥~ Streams Order

Figure 1: QGIS Processing Toolbox

You can run the tools from there and use the layers in QGIS as inputs. The QGIS plugin will
first try to find nadi-gis binary on your PATH and use it, if not it'll try to use the binary provided
with the plugins. Itis preferred to have nadi-gis available in PATH and running without errors.

8.2. Example

The examples here will be given using QGIS plugin, and using the CLI tool both. CLI tool is
great for quickly running things, and doing things in batch, while QGIS plugin will be better
on visualization and manual fixes using other GIS tools.

8.2.0.1. Using QGIS Plugin

First downloading the data is done through the Download USGS Data tool. As shown in the
screenshot below, input the USGS site ID and the data type you want to download.

24

= Vector - Download USGS Data

Parameters | Log
USGS Site ID

03217200
Data Type

basin
Output Directory for GeoJSON

[Save to temporary folder]

0%

Advanced - | Run as Batch Process... @Run X Close

Figure 2: QGIS Download

You will need, tributaries for the upstream tributaries for network, and nwis-site will
download the USGS NWIS sites upstream of the location. We will use those two for the

example. If you have national data from other sources, you can use the basin polygon to
crop them.

Stream Order tool is mostly for visual purposes. The figure below shows the results from
stream order on right compared to the raw download on left.

i

Figure 3: Stream Order Result

25

After you have streams (tributaries), you can use the Check Streams tool to see if there
are any errors. It will give all the nodes and their categories, you can filter them to see if it
has branches, or if it has more than one outlet. The figure below shows the branches with
red dot. If we zoom in we can see how the bifurcation on the stream is detected, and how
stream order calculation is confused there.

Tt P tf
T T e g e T Ll

Figure 4: Check Streams Result

Find Connections tool will find the connection between the points using the stream
network. The results below shows the tool being run on the NWIS points.

26

P
1l Bookmarks

ackage o +

B+ Vector - Find Connections
red Ty

3 Parameters | Log
Wi | Streams Network =
|
IV = o

. \/~ Output Network 1 (%] % i
Ty
r| .

Node Points
ile:
1pz| " 03217200_nwis-site [EPSG:4326] - [gﬁ] ‘% —
en
. Selected features only

Primary Key Field for Node Points [optienal]

q || =ec comid - LN S
. s
impli ol ’

lod] Simplify Connections £

Output Network

) tempo g

» tempor = Vi
. | Open output file after running algorithm o /
!g Output Network Text File ¢
| L o e
1 0% .
_ Advanced - || Run as Batch Process... X Close L ; o .
- A

Figure 5: Find Connections Result

If we select simplify option, it'll only save the start and end point of the connection instead
of the whole stream.

P
il Bookmarks

ackage e ke . f)
I8~ Vector - Find Connections

reg B
Parameters | Log

)
WI | streams Network

v . 5
o \/~ Output Network [] @ﬁ] %
Tl
rT| .

Node Points
ile:
ipZ] ' 03217200_nwis-site [EPSG:4326] - @j] %

Selected features only

Primary Key Field for Node Points [optional]

9 || sbc comid -
‘od| | [v| Simplify Connections
' Output Network
) te

) emy
. V| Open output file after running algorithm
’g Output Network Text File
ut| 5. -
ut]

| o%
- Advanced - || Run as Batch Process... X Close
= bss=T=ooToT —T T, T
- 1488 - 2232[0] o | ! A
= 2232-3126[0] i v

= 31264168 [0]
= 4168 -5359 [0]
= 5359 - 6698 [0]

= zzns 20773 MM

J“(e - a—;

Figure 6: Find Connections Result Alt

Of course you can run Stream Order on the results to get a more aesthetically pleasing
result.

27

| kmp =l £ L
patial Bookmarks / | |)
ome 2 i ‘ v

i(»! Vector - Streams Order

o Parameters | Log

15| | Input Streams

/" Output Network [1 - @:3 ‘&

Qutput Streams
v4 ||[5ave to temparary file]

I | Open output file after running algorithm

I

| 0%

Advanced ~ || Run as Batch Process... &Run X Close

R A SOl

Order

297300 musie_sitn - = i \ [F 1 e %

Figure 7: Find Connect.ions Reéﬁit W}th
8.2.0.2. Using CLI

An example of running nadi-gis using CLI can be done in the following steps:
8.2.0.2.1. Download data

We'll download the streamlines and the NWIS Sites from USGS for station 03217200 (Ohio
River at Portsmouth, OH).

nadi-gis usgs -s 03217200 -d n -d t -o output/

This will download two files:
output/03217200 nwis-site.json output/03217200 tributaries.json

Now we can use check command to see if there are any problems with the streams.
nadi-gis check output/03217200 tributaries.json

That gives us the following output:

28

Invalid Streams File: Branches (826)
* Qutlet: 1

* Branch: 826

* Confluence: 30321

* Origin: 29591

We can generate a GIS file to locate the branches and see if those are significant. Refer to
the help for check or use the QGIS plugin.

And to find the connections, we use network subcommand like this:
nadi-gis network -i output/03217200 nwis-site.json output/03217200 tributaries.json
Output:

Outlet: 3221 (-82.996916801, 38.727624498) -> None
3847 -> 3199
2656 -> 2644
399 -> 1212
2965 -> 3942
2817 -> 6236
5708 -> 4733
2631 -> 5741
201 -> 2101
2066 -> 2317
3770 -> 1045
. and so on

Since this is not as useful, we can use the flags in the network subcommand to use a different
id, and save the results to a network file.

First we can use layers subcommand to see the available fields in the file:
nadi-gis layers output/03217200 nwis-site.json -a
which gives us:

03217200 nwis-site
- Fields:

29

"type" (String)
"source" (String)
"sourceName" (String)
"identifier" (String)
"name" (String)

"uri" (String)
"comid" (String)
"reachcode" (String)
"measure" (String)
"navigation" (String)

+ 4+ 4+ + + + + + + o+

Using comid as the id for points, and saving the results:

nadi-gis network -i output/03217200 nwis-site.json output/03217200 tributaries.json
-p comid -o output/03217200.network

The output/03217200.network file will have the connections like:

15410797 -> 15411587
6889212 -> 6890126
8980342 -> 10220188
19440469 -> 19442989
19390000 -> 19389366
6929652 -> 6929644

. and so on

Make sure you use a field with unique name, and valid identifier in NADI System.

30

9. Network Analysis

9.1. Core Concepts

This section contains a brief explanation of core concepts.
The main concepts that you need to know are:

+ Attributes are values, it can be float, integer, boolean, strings, or list of attributes, or a
map of attributes (key=value),

* Nodes are points in the network, they can have attributes, input nodes and an output
node,

* Network is a collection of nodes, network can also have attributes, Network used in the
Nadi system can have only one outlet, so a ‘ROOT' node is added if there are multiple
outlet. And loading a network that is not a directed tree is undefined behaviour.

+ Expression is something that can be evaluated or executed, it consists of literal values
(attributes), variables (node, network, env variables that could hold attributes), function
calls, or a mathmatical or logical operation.

* Functions in nadi are of 3 types, env functions are normal functions that take values and
run, network functions take values and run on the network, while node functions run at
each node (they also provide a way to subset which nodes to run it on).

+ Task is an execution body of the task system. It can be of env, network or node type. It can
be conditional (If-Else) or loop (While) consisting of more tasks inside it. Task can assign
values to the env/network/node attributes, or call mutable functions on the top level.

+ String Template: Some functions take string inputs that are interpreted dynamically to
represent different strings based on variables.

* Plugins provide the functions used by the nadi task system. There are internal plugins
and external plugins. Internal plugins comes with the installation, while external plugins
are loaded from dynamic libraries.

31

9.1.0.1. Keywords

Keyword Description

node the node task type, function or variable

network/net | the network task type, function or variable

env the environment task type, function or variable

exit exit the program

end end the execution of tasks without exiting

help display help for functions

inputs get node variables or function output for input nodes of a node
output get node variable or function output for output node of a node
nodes get node variable or function output for all nodes in the network
if if statement for conditional task/expression

else else statement for conditional task/expression

while while statement for loop task

in binary operator to check if something is in another (list/string)
match binary operator to check patterns on string (regex)

And here are some keywords reserved for future:

Keyword Description

function/func | user defined functions

map map values in an array/attrmap to a function
attrs attributes of the env/node/network

loop loop task

for for loop task for looping through array/attrmap

Continue with the chapters for details on each concept. Or skip ahead to Learn by Examples
if you want to jump into the examples.

9.2. Task

Task is an execution body in the task system. There are different types of tasks, specially
environment, network and node type tasks, and there can be conditional tasks that only
execute based on a condition or loops.

32

Some examples of different tasks are given below to show a general overview, but the
concepts inside the tasks system will be introduced as we progress through the chapters,

Environment tasks that can evaluate expressions, assign variables, or call functions:

env 1 +2 * 8

env render("my name is { name}", name="John")
env.x = 12 > 2;

env.x

Results:

17
"my name is John"
true

network task loading a network, and node task getting node attributes:

network load str("a->b\nb->c")
node.NAME

Results:

= ”b“,

Conditional and Loop task

if (!val? | (val >5)) {
if val is not defined or greater than 5, set it to 0
env.val = 0
}
while (val < 5) {
env.val = env.val + 1

33

Results:

->

->
->

->

A W N R O
u B~ W N =

Tasks system acts like a scripting language for nadi system. A Task consists of getting/evalu-
ating/setting attributes in environment, network or nodes. The value that can be evaluated
are expressions that consists of literal values, variables, or function calls that can either be a
environment, node or a network function. Functions are unique based on their names, and
can have default values if users do not pass all arguments.

The code examples throughout this book, that are being used to generate network
diagrams, tables, etc are run using the task system.

Here is an example contents of a more complex task file, do not concern with what each
task does, we will go through them in other chapters.

sample .tasks file which is like a script with functions
node<inputsfirst> print attrs("uniqueID")

node show node()

network save graphviz("/tmp/test.gv")
node<inputsfirst>.cum val = node.val + sum(inputs.cum val);

node[WV04113,WV04112,WV04112] print attr toml("testattr2")
node render("{NAME} {uniqueID} { Dam Height (Ft)?}")
node list attr("; ")
some functions can take variable number of inputs
network calc attr errors(

"Dam Height (Ft)",

"Hydraulic Height (Ft)",

"rmse", "

nse", "abserr"
)
node sum safe("Latitude")
node<inputsfirst> render("Hi {SUM ATTR}")
multiple line for function arguments
network save table(

"test.table",

"/tmp/test.tex",

true,

radius=0.2,

34

start = 2012-19-20,

end = 2012-19-23 12:04

)
node.testattr = 2
node set attrs render(testattr2 = "{testattr:calc(+2)}")
node[WV04112] render("{testattr} {testattr2}")

here we use a complicated template that can do basic logic handling
node set attrs render(
testattr2 = "=(if (and (st+has 'Latitude) (> (st+num 'Latitude) 39)) 'true
'false)"
)
same thing can be done if you need more flexibility in variable names
node load toml string(
"testattr2 = =(if (and (st+has 'Latitude) (> (st+num 'Latitude) 39)) 'true
'false)"
)
selecting a list of nodes to run a function
node[
comment here?
wWve4113,
Wve4112
] print attr toml("testattr2")
selecting a path
node[WV04112 -> WV04113] render("=(> 2 3)")

9.3. Attributes

Attributes are TOML like values. They can be one of the following types:

Type Name Rust Type Description

Bool bool Boolean values (true or false)

String RString Quoted String Values

Integer i64 Integer values (numbers)

Float f64 Float values (numbers with decimals)
Date Date Date (yyyy-mm-dd formatted)

Time Time Time (HH:MM, HH:MM: SS formatted)
DateTime DateTime Date and Time separed by orT
Array RVec<Attribute> [List of any attribute values
Table/AttrMap | AttrMap Key Value pairs of any attribute values

35

https://toml.io/en/

You can write attributes directly into the task system to assign them, use them in functions.
You can also load attributes from a file into the env/node/network.

If you want to assign a attribute inside the task system, you can do it like this:

env.river = "Ohio River"
env.river

Results:

"Ohio River"

Example Attribute File that can be loaded:

river = "Ohio River"

outlet = "Smithland Lock and Dam"
outlet is gage = true

outlet site no = ""
streamflow start = 1930-06-07
mean streamflow = 123456.0
obs 7q10 19405.3

nat 7910 = 12335.9

num_dams gages = 2348

Here loading the files we can see only ohio has the attributes loaded

I network load file("./data/mississippi.net")
node[ohio] load attrs("./data/attrs/{ NAME}.toml")
node.outlet

Results:

lower-mississippi
upper-mississippi = <None>,
missouri = <None=>,

arkansas = <None=,

red = <None>,

ohio = "Smithland Lock and Dam",

<None>,

36

tenessee =

With plugins, you can load attributes from different file types.
9.4. Node

A Node is a point in network. A Node can have multiple input nodes and only one output
node. And a Node can also have multiple attributes identifiable with their unique name,
along with timeseries values also identifiable with their names.

If you understand graph theory, then node in nadi network is the same as a node in a graph.

Nodes in Nadi are identified by their name, that is loaded from the network file. Node names
are string values, even if they are integer or float, they are read and internally stored as
strings. If the node name contains characters outside of alphanumeric and underscore (),
it has to be quoted.

i.e. valid names like 123 or node_1 can appear unquoted or quoted, but names like node-123
needs to be quoted: "node-123".

network load str("

123 -> node 1

node 1 -> \"node-123\"
II)

node .NAME
Results:
{
node-123 = "node-123",
node 1 = "node 1",
123 = "123"
}

If you do not quote the name, you'll get an error:

network load str("123 -> node-1")
node .NAME

37

Error;

Error in function load str: Error: Parse Error at Line 1 Column 8
123 -> node-1
~ Incomplete Path; expected node here

9.5. Network

A Network is a collection of nodes. The network can also have attributes associated with it.
The connection information is stored within the nodes itself. But Network will have nodes
ordered based on their connection information. So that when you loop from node from first
to last, you will always find output node before its input nodes.

A condition a nadi network is that it can only be a directed graph with tree structure.

Example Network file:

network consists of edges where input node goes to output node
each line is of the format: input -> output

tenessee -> ohio

if your node name has characters outside of a-zA-Z , you need to
quote them as strings

ohio -> "lower-mississippi"

"upper-mississippi" -> "lower-mississippi"

missouri -> "lower-mississippi"

arkansas -> "lower-mississippi"

red -> "lower-mississippi"

The given network can be loaded and visualized using svg_save function.

network load file("./data/mississippi.net")
network command("mkdir -p output")
network svg save(
"./output/network-mississippi.svg",
label="[{INDEX}] { NAME:repl(-,):case(title)}",
bgcolor="gray"

Results:

38

You can assign different graphical properties through node properties.

network load file("./data/mississippi.net")
node[red].visual.nodecolor = "red";
node[ohio].visual.linecolor = "blue";
node[ohio].visual.linewidth B
node["upper-mississippi", red].visual.nodesize = 8;
node[red].visual.nodeshape = "triangle";
node["upper-mississippi"].visual.nodeshape = "ellipse:0.5";
network svg save(
"./output/network-mississippi-colors.svg",
label="[{INDEX}] { NAME:repl(-,):case(title)}",
bgcolor="gray"

Results:

39

9.6. Expression

Expressions are airthmetic or logical operations. They can appear inside the conditional
statements, or as input to a task, or nested in other expression or function calls.

Expressions are defined into the following categories:

9.6.0.1. Literal Values

env [1, true, "no maybe"]
Results:

[1, true, "no maybe"]
9.6.0.2. Variable

env.value = [1, true, "no maybe"];
env.value

Results:
[1, true, "no maybe"]
Variables also have a “check” mode, where it returns true if variable exists, false if it does not.

env.value = [1, true, "no maybe"];
env value?
env other var?

Results:

true
false

You can also use use varible from node, or network in other context. For example:

40

env.value = [1, true, "no maybe"];
network echo(json(env.value))

Results:

[1, true, "no maybe"]

Special variable types like nodes, inputs, output are available besides env, network and node
based on what type of task the expression is on.

You will learn more about this on Cross Context Functions and Variables chapter.

9.6.0.3. Unary Operator

env !true
env - 12.0

Results:

false
-12

9.6.0.4. Binary Operator

env (12 > 34) & true

env "x" in "xyz"

env 12 in [123, true]

env "my name is" match "“my.*"

Results:

false
true
false
true

41

9.6.0.5. If Else

env if(!'true) {"if true"} else {"if false"}
Results:

"if false"
9.6.0.6. Function

env.value = [1, true, "no maybe"];
env get(value, 2)

Results:
"no maybe"

Out of all expressions, only the function is not garanteed to return a value. If you are using
a function expression and expect a value and it does not return it, it'll be a runtime error.

env echo("Hello world!") + 12
Error:

Hello world!

Function echo did not return a value

Special function types like nodes, inputs, output are available besides env, network and node
based on what type of task the expression is on.

You will learn more about this on chapter.

9.7. String Template

String templates are strings with dynamic components that can be rendered for each node
based on the node attributes.

42

A simple template can be like below:

Hi, my name is {name}, my address is {address?"N/A"}.
I wrote this document on {%A}, exact date: {%Y-%m-%d}.

Results (with: name=John; address=123 Road, USA):

Hi, my name is John, my address is 123 Road, USA.
I wrote this document on Friday, exact date: 2025-06-20.

With more complicated templates, we would be able to generate documents with text and
images based on the node attributes as well.

For example the following template can be used to generate a table.

| Name | Index |
R i [o===eoe=- |
<l-- --- 8<--- -- >
| { NAME:case(up)} | {INDEX} |
<l-- --- 8<--- -- >

network load file("./data/mississippi.net");
network echo(render template("./data/example.template"))

Results:
|Name|Index| |—-|—-| | LOWER-MISSISSIPPI|0| |UPPER-MISSISSIPPI|1| |MISSOURI|2|

| ARKANSAS|3| |RED|4| |OHIO|5| | TENESSEE|6|

Of course, there are better ways to generate table than this, but this shows how flexible the
template system is.

9.8. Node Function

Node function runs on each node. It takes arguments and keyword arguments.

For example following node function takes multiple attribute names and prints them. The
signature of the node function is print_attrs(*args).

43

network load file("./data/mississippi.net")
node print attrs("INDEX", name=false)

Results:

INDEX =
INDEX =
INDEX =
INDEX =
INDEX =
INDEX =
INDEX =

SO U A W N P O

Only the NAME is printed as they do not have any other attributes.

9.8.0.1. Selective Execution

You can selectively run only a few nodes, or change the order the nodes are executed.
Given this network:

Network Diagram

9.8.0.1.1. Inverse Order

network load file("./data/mississippi.net")
node<inverse> print attrs("NAME")

Results:

NAME = "tenessee"

NAME = "ohio"
NAME = "red"
NAME = "arkansas"
NAME = "missouri"

NAME = "upper-mississippi"
NAME = "lower-mississippi"

44

9.8.0.2. List of Nodes

network load file("./data/mississippi.net")
node[tenessee, "lower-mississippi"] print_attrs("NAME")

Results:
NAME = "lower-mississippi"
NAME = "tenessee"

9.8.0.3. Path of Nodes

network load file("./data/mississippi.net")
node[tenessee -> "lower-mississippi"] print attrs("NAME")

Results:
NAME = "tenessee"
NAME = "ohio"
NAME = "lower-mississippi"

As we can see in the diagram, the path from tenessee to lower mississippi includes the
ohio node.

9.9. Network Function

Network function runs on the network as a whole. It takes arguments and keyword argu-
ments. Few network functions we have been using throughout the examples are load file,
load str and svg save:

network load file("./data/mississippi.net")
network command("mkdir -p output")
network svg save(
"./output/network-mississippi-sdf.svg",
label="[{INDEX}] { NAME:repl(-,):case(title)}",
bgcolor="gray"

45

Results:

For example following network function takes file path as input to save the network in
graphviz format:

save graphviz(
outfile [PathBuf],
name [String] = "network",
global attrs [String] = "",
node attr [Option < Template >],
edge attr [Option < Template >]

Note that, if the arguments have default values, or are optional, then you do not need to
provide them.

For example, you can simply call the above function like this.

network load file("./data/mississippi.net")
network save graphviz("./output/test.gv")
network clip()

the path link are relative to /src
network echo("./output/test.gv")

Results:

digraph network {

46

"upper-mississippi" -> "lower-mississippi"
"missouri" -> "lower-mississippi"
"arkansas" -> "lower-mississippi"

"red" -> "lower-mississippi"

"ohio" -> "lower-mississippi"

"tenessee" -> "ohio"

}
With extra commands you can also convert it into an image

network load file("./data/mississippi.net")
network save graphviz("./output/test.gv")
network command("dot -Tsvg ./output/test.gv -o ./output/test.svg")

Results:

tenessee

upper-mississippi

9.10. Cross Context Functions and Variables

You can access variable and call functions based on their default context (e.g. node variable/
function in a node task). Additionally, you can also access the variables or call functions in
select few other context.

By default, if a function is not available, node/network task calls the environment function
of the same name.

For example, here the sum and array functions are environment functions, while the count is
a network function. When you use Nadi IDE, it'll show you which function is actually being
called at the top of the editor.

47

network load str("a->b")
network sum(array(count(), 1))

Results:

Besides this, you can manually call cross context variable/functions in the following ways:
9.10.0.1. Env and Network Variables/Functions

You can use env and network variables anywhere in the task system with the dot syntax.

network load str("a->b")
env.var = 12;
network.sth = true;

env render("this is {x}", x = network.sth)

network str(env.var)
node array(network.sth, env.var, node.NAME)

Results:

"this is true"
n 12II

[true, 12, "b"],
[true, 12, "a"l]

[o)]
1l

Similary, env and network functions can be called anywhere. These functions cannot be
mutable functions (change network internally).

Taking the previous example, if we use env function count, we get an error as the function
arguments are different.

network load str("a->b")
node network.count()
network sum(array(env.count(), 1))

48

}

Error in function count: Argument 1 (vars [& [bool]]) is required

9.10.0.2. Node Variables/Functions

You can use node, inputs, output and nodes keywords to access node variables and functions
from different contexts. nodes is valid in all tasks, while the other 3 are only valid in a node
task and refer to the current node, input nodes and output node respectively.

network load file("./data/mississippi.net")
env count(nodes.)
node inputs.NAME

Results:

["ohio", "upper-mississippi", "missouri", "arkansas", "red"],

(1,

lower-mississippi
upper-mississippi
missouri [1,
arkansas [1,
red = [],

ohio = ["tenessee"],
tenessee = []

You can call node functions not just for the node in the context, but also for input nodes,
and output node:

Please note that the root node (outlet) of the network doesn’t have output node, so we need
to skip that, which can be done through the output. ? which is checking for the dummy
variable _in output, which is true if the node has an output.

49

network load file("./data/mississippi.net")
node[tenessee -> "lower-mississippi"] inputs.render("{ NAME}")
node[tenessee -> "lower-mississippi"](output. ?) output.render("{ NAME}")

Results:

tenessee = [],
ohio = ["tenessee"],

lower-mississippi = ["ohio", "upper-mississippi", "missouri", "arkansas", "red"]
}
{

tenessee = "ohio",

ohio = "lower-mississippi"
}

You can also use nodes keyword to call the function on each node, it can be used anywhere,
but is useful for env and network tasks.

network load file("./data/mississippi.net")

env nodes.render("Node [{INDEX}] { NAME}")
Results:

["Node [0] lower-mississippi", "Node [1] upper-mississippi", "Node [2] missouri",
"Node [3] arkansas", "Node [4] red", "Node [5] ohio", "Node [6] tenessee"]

9.11. Plugins
9.12. Further Reading

If you need help on any functions. Use the help as a task. You can use help node Or help
network for specific help. You can also browse through the function help window in the nadi -
ide for help related to each functions.

help node render

50

Results:

node render (template: '& Template', safe: 'bool' = false)
Render the template based on the node attributes

- “template: & Template®™ String template to render
- “safe: bool" [def = false] if render fails keep it as it is instead of exiting

For more details on the template system. Refer to the String
Template section of the NADI book.

Or you can use nadi --fnhelp <function> using the nadi-cli.

Now that you have the overview of the nadi system’s data structures. We'll jump into the
software structure and how to setup and use the system.

If you want more details on any of the data structures refer the Developer's references, or
the library documentation.

51

10. Learn by Examples

Topic Learn About

Attributes Setting and Getting Attributes

Control Flow Control flow, if, else, while loops etc
Connections Loading and modifying connections

Counting Counting nodes in network, conditional
Cumulative Calculating Network cumulative sums and those
Import Export | Importing and exporting multiple data formats
String Template | Using String Templates to do various things

10.1. Attributes

There are 3 kind of attributes in nadi. Environment, Network and Node attributes. as
their name suggests environment attributes are general attributes available in the current
context. Network attributes are associated with the currenly loaded network. and node
attributes are associated with each nodes.

nadi has special syntax where you can get/set attributes for multiple nodes at once.

network load str("a -> b\n b -> d\n ¢ -> d\n");
environmental attribute

env.someattr = 123;

env.other = 1998-12-21;

env array(someattr, other)

network attribute

network.someattr = true;

network.someattr

node attributes

node.someattr = "string val";

node.someattr

Results:

[123, 1998-12-21]
true

{

d = "string val",

52

c = "string val",
"string val",
"string val"

like you saw with the array function, variables used are inferred as the attributes of the
current env/network/node task.

you can use attributes from outside of current task type in some cases like:
+ env/network variables can be used anywhere

* node variables are valid in node tasks

* node tasks has special variables types like inputs and output

network load str("a -> b\n b -> d\n c -> d\n");
environmental attribute

env.someattr = 123;

env.other = 1998-12-21;

network attribute

network.someattr = true;

using network attr in env task
env array(network.someattr, other)

using nodes in network task
network nodes.NAME

Results:

[true, 1998-12-21]
[IIdII' ”C“, IIbII, Ilall]

Similarly inputs:

network load str("a -> b\n b -> d\n c -> d\n");

node inputs.NAME

Results:

53

= ["b", "c"],
oF

["a"1,

[]

QO T 0o Qo
i

Refer to the network diagram below to verify the output are correct:

network load str("a -> b\n b -> d\n c -> d\n");
network svg save("./output/attrs-simp.svg")

Results:

(@)

o

10.2. Control Flow

Task has some basic control flow required to write programs. They are if-else branches and
while loops.

10.2.0.1. Conditional (If-Else) Blocks

There are two kind of if-else branches. One is on an expression level. which means there has
to be if and else branch both as it expects a return value. The following example shows the
expression with if-else block.

54

env.newvar = if (12 > 90) {"yes"} else {"no"};
env.newvar

Results:

||n0||

Trying to do it without else block will result in an parse error as the program will error with
a syntax error, for example the code below is invalid

env.newvar = if (12 > 90) {"yes"};
env.newvar

That's when you can use the if-else block on the task level. This can be only if block as the
execution blocks are tasks instead of expressions.

Here, since the condition is negative the task inside the block is never executed, hence
env.newvar iS empty.

if (12 > 90) {
env.newvar = "yes";

}

env.newvar

*Error®:

EvalError: Attribute not found

10.2.0.2. While Loop

While loop runs the tasks inside the block repeatedly while the condition is satisfied. There is
an iteration limit of 1,000,000 for now just in case people write infinite loop. This is arbritary.

env.somevar = 1;

while (somevar < 10) {
env.somevar
env.somevar = env.somevar + 1;

55

Results:

O© 00 N O Ul A WIN B

This can be used to repeat a set of tasks for a various reasons.

10.3. Connections
Connections between the nodes is the most important part of nadi. you can load networks

by loading a file or string. The network is a simple multiline text with one edge (input ->
output) in each line. comments starting with # are supported.

10.3.0.1. Default is Empty Network

Tasks are run by default with an empty network. So you might still be able to work with
network attributes, but the nodes will be empty. also note that when you load network it
replaces the old one including the attributes.

network.someattr = 1234;
network.someattr

Results:

1234

But we can see the nodes are not there,

network count()
network nodes.NAME

Results:

56

Trying to run node functions on the empty network means nothing is run

node render("{NAME}")

Results:

10.3.0.2. Loading Network from String

Here assume we have a network consisting of nodes of dams and gages like the following
where dam nodes start with d and gages with g:

network load str("

dl -> d2
d3 -> g2
d2 -> gl
gl -> d4
g2 -> d4
d4 -> g3

"D
network svg save(
"./output/simple-count.svg",
label="[{INDEX}] { NAME}"
)

Results:

57

n [6]d1

. [5] d2
. [4] 91
[3]d3
[2192
[1]d4
. [0193

10.3.0.3. Loading Network from a File

we can load a network from a file:

network load file("./data/mississippi.net");
network svg save(
"./output/ex-network-conn.svg",
label="[{INDEX}] { NAME}"
)

Results:

u [6] tenessee
. [5] ohio
[4] red

[3] arkansas

[2] missouri

[1] upper-mississippi

[0] lower-mississippi

58

10.3.0.4. Modifying the network

You can modify the network after loading it as well. The example below extracts just the
nodes that are dams. Compare this with the previous network to see how the connections
are retained during the subsets.

network load str("

dl -> d2
d3 -> g2
d2 -> gl
gl -> d4
g2 -> d4
d4 -> g3

")
node.is dam = NAME match "~d[0-9]+";
network subset(nodes.is dam);
network svg save(
"./output/simple-count-subset.svg",
label="[{INDEX}] { NAME}"
)

Results:

3] d1
i 2] d2
(1] d3
0] d4

This can be useful when you want to remove nodes that do not satisfy some selection criteria
for your analysis without having to redo the network detection part.

59

10.4. Counting Nodes

Here assume we have a network consisting of nodes of dams and gages like the following
where dam nodes start with d and gages with g:

network load str("

dl -> d2
d3 -> g2
d2 -> gl
gl -> d4
g2 -> d4
d4 -> g3

Wk
network svg save(
"./output/simple-count.svg",
label="[{INDEX}] { NAME}"
)

Results:

. [6]d1
I [5] d2
. [41 91
[3]d3
(2192
[1]d4
. [01g3

Simply counting number of nodes, or certain types of nodes in a network is done through
count function.

network load str("
dl -> d2
d3 -> g2
d2 -> gl
gl -> d4

vV V V

60

g2 -> d4

d4 -> g3

Bk

node.g node = NAME match "~g[0-9]+";
network count()

network count(nodes.g node)

network count(nodes.g node) / count()

Results:

7
3
0.42857142857142855

when you call a network function, you get one output, while a node function will give you
the output for each node like here:

network load str("

dl -> d2

d3 -> g2

d2 -> gl

gl -> d4

g2 -> d4

d4 -> g3

")

node.g_node = NAME match "~g[0-9]+";
node.g_node

Results:

{
g3 = true,
d4 = false,
g2 = true,
d3 = false,
gl = true,
d2 = false,
dl = false

}

61

Always be careful that node function is run for all the nodes separately, if you are running
them without any variables from the node, then you can use network function, or environ-
ment function to get the results.

Counting the number of nodes upstream of each node gives us the order of the nodes.

network load str("

dl -> d2
d3 -> g2
d2 -> gl
gl -> d4
g2 -> d4
d4 -> g3

")
node<inputsfirst>.nodes us = 1 + sum(inputs.nodes us);
network svg save(
"./output/simple-count-1.svg",
label="{ NAME} = {nodes us}"
)

Results:

» d1=1
. d2=2
X g1=3
d3=1
g2=2
d4 =6
. 93=7

We can add a condition and count the nodes that satisfy that condition only. Like counting
the number of dams upstream of each node (including the node).

network load str("
dl -> d2
d3 -> g2
d2 -> gl

62

gl -> d4
g2 -> d4
d4 -> g3
")
node.is dam = NAME match "~d[0-9]+";
node<inputsfirst>.dams us = int(is_dam) + sum(inputs.dams us);
network svg save(
"./output/simple-count-2.svg",
label="{ NAME} = {dams us}"

Results:

- d1=1
. d2=2
. g1=2
d3=1
g2="1
d4=4
. g3=4

You can similarly count the number of gages downstream. Here we need a conditional unlike
in previous cases as not all nodes have output. In case of inputs, a leaf node would have no
inputs but sum([]) would still be a valid output of 6. But for node without output nodes, the
variable type output fails with NoOutputNode error, so we add a conditional check to avoid that.

network load str("

dl -> d2

d3 -> g2

d2 -> gl

gl -> d4

g2 -> d4

d4 -> g3

")

node.is gage = NAME match "~g[0-9]+";

node<outputfirst>.gages ds = int(is_gage) + if (output. ?) {
output.gages _ds

63

} else {
0
s
network svg save(
"./output/simple-count-3.svg",
label="{ NAME} = {gages ds}"
)

Results:

- d1=2
. d2=2
» gl1=2
d3=2
g2=2
d4 =1
. g3=1

Here the condition (output._?) checks if there is output on the node or not by checking for
the dummy variable _which is present in all nodes/network.

10.5. Cumulative Sum

Here we can use the stream ordering formula to calculate the stream order for each node:

network load str("
dl -> d2

d3 -> g1

d2 -> g1

gl -> d4

g2 -> d4

d4 -> g3

")
node<inputsfirst>.stream_ord = max(inputs.stream ord, 1) + int(count(inputs._ ?) >
1);

network svg save(

vV V V V

64

"./output/cumulative-1.svg",
label="{ NAME} = {stream ord}"
)

Results:

. d1=1
i d2 =1

d3=1
Vo aie2

g2=1
/ d4 =3
. g3=3

The first part takes the maximum order of the input nodes, then the second part
int(count(inputs. ?) > 1) checks if there are more than one input, adding one to the order
when multiple streams combine into one. You can use the funciton inputs_count() instead
of count(inputs. ?) to do the same thing.

That is the core of the NADI Task System, you can write functions that have their own logic
and then load them into the system. You can then use the syntax and network based analysis
methods of NADI using those functions.

And of course, we can visualize the different order of streams for easier understanding.

network load str("

dl -> d2
d3 -> gl
d2 -> gl
gl -> d4
g2 -> d4
d4 -> g3

"D

node<inputsfirst>.stream _ord = max(inputs.stream ord, 1) + int(count(inputs. ?) >
1);

node.visual.linewidth = stream ord / 2;

65

node(stream ord == 1).visual.linecolor = "green";
node(stream ord == 2).visual.linecolor = "blue";
node(stream ord == 3).visual.linecolor = "red";
network svg save(
"./output/cumulative-2.svg",
label="{ NAME} = {stream ord}"
)
Results:
- dl =1
. d2 =1
. d3=1
gl1=2
. Q2=
d4 =3
g3=3

10.6. Import Export Files

Similar to how you can load network files, you can load attributes from files as well. Direct
load of TOML format is supported from the internal plugins, while you might need external
plugins for other formats.

load_attrs function takes a template, and reads a different files for each node to load the
attributes from.

network load file("data/ohio.network")
node attributes.load attrs("data/attrs/{ NAME}.toml")
network svg save(
"output/ohio-import-export.svg",
label="{ NAME} (A = {basin_area?:f(2)})",
height=700,
bgcolor="gray"

66

Results:

You can use the render function to see if the files being loaded are correct. Here we can see
the examples for the first 4 nodes:

67

network load file("data/ohio.network")
node (INDEX<4) render("data/attrs/{ NAME}.toml")

Results:

smithland = "data/attrs/smithland.toml",

golconda = "data/attrs/golconda.toml",
old-shawneetown = "data/attrs/old-shawneetown.toml",
mountcarmel = "data/attrs/mountcarmel.toml"

You can also read a attributes from string, so you can combine that with files.from file
and load it.

network load file("data/ohio.network")

env.somevalue = attributes.parse attrmap(
files.from file("data/attrs/smithland.toml")

)i

env.somevalue.basin _area

env.somevalue.length

Results:

371802.16
1675.95

You can export csv files

network load file("data/ohio.network")

node attributes.load attrs("data/attrs/{ NAME}.toml")

network table.save csv("output/ohio-export.csv", ["NAME", "basin area", "length"])
network command("cat output/ohio-export.csv | head", echo=true)

Results:

$ cat output/ohio-export.csv | head
NAME, basin_area, length
"smithland",371802.16,1675.95

68

"golconda",370942.26,1701.32
"old-shawneetown",363656.85,1772.27
"mountcarmel",74359.92,1918.08
"jt-myers",277962.45,1791.07
"evansville",275482.9,1878.29
"calhoun",18540.88,1992.5
"newburgh",253065.62,1903.58
"cannelton",249382.5,1993.72

10.6.0.1. GIS Files

First we make a GIS file by exporting. The image below shows the resulting points (red) from
the shapefile and connections (black) from the Geopackage file when we visualize this on
QGIS (with background of Terrain and Ohio River tributaries).

network load file("data/ohio.network")
node attributes.load attrs("data/attrs/{ NAME}.toml")
node.geometry = render("POINT ({lon} {lat})");
network gis.gis save nodes(

"output/ohio-nodes.shp",

"geometry",

{

NAME = "String",

basin area = "Float",

length = "Float"

}

)
Exporting the edges

network gis.gis save connections(
"output/ohio-connections.gpkg",
"geometry"

Results:

The geometry attributes should be WKT String.

Now we are using the generated GIS files to load the network and the attributes:

network gis.gis load network("output/ohio-connections.gpkg", "start", "end")
network gis.gis load attrs("output/ohio-nodes.shp", "NAME")

69

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

Results:

70

As we can see the plugins make it easier to interoperate with a lot of different data formats.

Here GIS plugin will support any file types supported by gdal. Similarly, other formats can
be supported by writing plugins.

10.7. String Templates

71

11. Nadi Extension Capabilities

Nadi System can be extended for custom use cases with the following ways:
+ LISP on String Template

*+ Task System

* Rust Library

* Python Library

* Plugin System

72

../devref/string-templates.md#advanced-string-template-with-lisp

12. List of All Functions

All the functions available on this instance of nadi, are listed here.
12.0.1. Env Functions
12.0.2. Node Functions

12.0.3. Network Functions

73

13. Python Library

13.1. Nadi Py

This can be installed from pypi with pip install nadi-py command.

Then you can simply import and use it:

import nadi

net = nadi.Network.from str("a -> b")
print([n.NAME for n in net.nodes])

The functions are available inside the nadi.functions submodule.

import nadi
import nadi.functions as fn

net = nadi.Network.from str("a -> b")
fn.network.svg save(net, "test.svg")

13.1.1. Combining the power of python and Task System

You can combine the power of python with task system using the command function from Nadi.
Basically, you write your logic that cannot be written in nadi in python, you can use nadi-
py if you need to parse network files, load attributes or call any other nadi functions. And
you can pass the results of the python script at the end by simply printing it to the standard
output.

Future work is under consideration to have a tight couple between the python and nadi
system.

13.2. Differences with Task System

The difference from Task system is that now we use python syntax and the python functions.
The environment from task system is no longer available, and the node functions are not
automatically run in a loop.

74

We lose the advantages brought by the Domain Specific Programming Language, while
gaining the flexibility and the well developed libraries of the python language.

Some examples showing how you'd have to write python codes from equivalent examples
in the book are shown below.

13.2.0.1. Example 1: looping through the nodes

network load str("a -> b\nc -> b")
node(output. ?) echo(env.render("{i} -> {o}", i=node.INDEX, o=output.INDEX))

Results:

1 ->0
2 ->0

Equivalent Python:

import nadi
net = nadi.Network.from str("a -> b\nc -> b")
for node in net.nodes:
out = node.output()
if out is None:

continue
print(f"{node.INDEX} -> {out.INDEX}")

Here the code for python is longer because it is general purpose and doesn’t have the syntax
tailored for network analysis like with Nadi Task System.

13.2.0.2. Example 2: Skip execution when variable is absent

If we had to check for an attribute, then it becomes even more complicated.

node (somevar?) somefunc(somevar)

import nadi
import nadi.functions as fn

75

net = nadi.Network.from str("a -> b\nc -> b")
for node in net.nodes():
try:
fn.node.somefun(node, node.somevar)
except AttributeError:
continue

In case of multiple variables being used, the AttributeError might catch all of them, further
fine tuning in python could make the code far longer than in nadi.

13.3. Plugins

Not only can you use nadi-py to write network based algorithms in python, you can also use
it to write executable plugins that you can use to run analysis in python and feed it back to
nadi system.

First thing to say about that is, you don't need nadi-py for writing python plugins, as they
are run as a normal python scripts.

13.3.0.1. Example without using nadi-py

Here is an example task that calls python using the command function:

network load file("scioto.network")
load average streamflow from the csv file
containing timeseries using python

node command("python area-and-streamflow.py { NAME}")

this just prints the attributes in csv format.
network print attr csv("INDEX", "area", "streamflow")

Here the command function takes a string template, renders it and runs it as a shell command
for each node.

Our python script should have a way to read that node’s name that we passed to the python
command.

import sys
import pandas as pd

76

try:
station = sys.argv[1]
except IndexError:
print("Give station")

exit(1)
df = pd.read csv(f"data/streamflow/{station}.csv", header=None)
sf = df.iloc[:, 4]

sf.index = pd.to datetime(df.iloc[:, 21)

daily = sf.resample('1ld').mean()

counts = daily.groupby(daily.index.year).count()
counts.index.name = "datetime"

daily.index.name = "datetime"

annual = daily.groupby(daily.index.year).mean().loc[counts > 300]

print("nadi:var:sf mean=", float(daily.mean()))

for year, flow in annual.items():
print(f"nadi:var:sf year {year}={flow}")

Here the line sys.argv[1] reads the argument from command line (node’s name in this case).
And reads the data for that node. The ouput is printed with prefix nadi:var: which tells nadi
to load as key=val pair for that node.

13.3.0.2. Example using nadi-py

The same example can be written using nadi-py so that the execution is very short (as it is
being run as a network function instead of node function; command is a slow function as a
new shell instance has to be created every time it is invoked).

Here we use the command network function and pass the network file as input. If your network
has changed you can use save file network function to save the network as a text file and
then pass that instead.

network load file("scioto.network")
load average streamflow from the csv file
containing timeseries using python

network command("python area-and-streamflow.py scioto.network")

this just prints the attributes in csv format.
network print attr csv("INDEX", "area", "streamflow")

77

The corresponding python script now will look like this:

import sys
import pandas as pd
import nadi

try:
network = sys.argv[1]
except IndexError:
print("Give station")
exit(1)

for node in nadi.Network(network).nodes():
station = node.NAME
df pd.read csv(f"data/streamflow/{station}.csv", header=None)
sf df.iloc[:, 4]
sf.index = pd.to datetime(df.iloc[:, 2])
daily = sf.resample('1ld').mean()
counts = daily.groupby(daily.index.year).count()
counts.index.name = "datetime"
daily.index.name = "datetime"
annual = daily.groupby(daily.index.year).mean().loc[counts > 300]

print(f"nadi:var:{station}:sf mean=", float(daily.mean()))

for year, flow in annual.items():
print(f"nadi:var:{station}:sf year {year}={flow}")

Here we load the network using nadi-py, and then loop through the node, and pass the
variables back to nadi through stdout. We have to pass the node names with the nadi:var:
as this is being run for the whole network. Without the node name, it'll take the key=val pair
as network attribute.

This should allow users to have a lot of flexibility in using python to do complex analysis
and get the results back into nadi directly. You can also save the results of the python script
into a file, and check if the file exists before running the command from nadi to save the
redundant computations.

13.4. Examples

TODO: add examples from papers' case studies.

78

14. Plugin Developer Guide

14.1. Executable Plugins

Executable plugins are programs that can be called from terminal. The
, and their families in the have the capacity to
run external programs through the command line.

The inputs to the program is given through the command line arguments, while the output
of the programs are read through the standard output of the program. This can be used to
call different/same commands for nodes with arguments dependent on their attributes.

And the output from the programs are taken by reading their stdout (standard output).
Any lines starting from nadi:var: (prefix) is considered a communication attempt with Nadi.
Currently, you can set attribute values by providing key=val pairs after the prefix. The
node function will set it for current node, and network function will set it for the network.
Furthermore, in network function, you can add one more section after prefix to set node
attributes. For example, nadi:var:nodel:value=12 will set the value attribute to 12 in the node
named nodel in the current network.

The executable plugin or commands are language agnostic, as long as the command is
available to run from the parent shell they will be run.

To learn how to write code in your language to parse command line arguments refer to the
Wikipedia page on Command Line Arguments

The following section shows example programs written in python and R that can interact
with nadi in this way.

14.1.0.1. Python

Here is an example python script that can be called from nadi for each node. This script just
reads a CSV file and passes the attributes to nadi, but more complicated programs can be
written by the users.

First part is importing libraries and getting the arguments from nadi. The code below reads
one string as a commandline argument and saves that into station variable.

79

https://en.wikipedia.org/wiki/Command-line_argument_parsing

import sys
import pandas as pd

try:
station = sys.argv[1l]
except IndexError:
print("Give station")
exit (1)

Then we can use any python logic with any libraries to do what we want. Here it reads the
CSV and extracts values based on the station name. This is just an example, but you can load
different csv files for each station and do a lot of analysis before sending those variables
to nadi.

df pd.read csv(f"data/streamflow/{station}.csv", header=None)
sf = df.iloc[:, 4]

sf.index = pd.to datetime(df.iloc[:, 21)

st = sf.resample('1ld').mean()

Once we have our variables from analysis, we can simply print them with nadi:var: prefix
so that nadi knows they are the variables it should read and load into each node.

print("nadi:var:sf mean=", float(sf.mean()))

for year, flow in sf.groupby(sf.index.year).mean().items():
print(f"nadi:var:sf year {year}={flow}")

Now we can call this script from inside the nadi tasks system like the following, assuming
the python file is saved as streamflow. py.

node command("python streamflow.py { NAME}")

If you want to know what the template will be rendered as, use render function, and if you
want to check whether it exists or not, you can use exists function.

14.1.0.2. RScript
Similar to most programming languages R can also read command line arguments when

ran with RScript command instead of R.

80

For example if you run the following script in a file called test.r and ran it with command
Rscript test.r some args 2, you get the output of [1] "some" "args" "2"

args <- commandArgs(trailingOnly = TRUE)
print(args)

So you can use the same method like in python to pass arguments, do analysis and pass it
back using the cat function in r as shown below. cat function avoids printing the [1] type
indices to the stdout.

cat(sprintf("nadi:var:this val=%d\n", 1200))

14.2. Compiled Plugins

As it is not possible to forsee all the use cases in advance, the nadi software can be easily
extended (easy being an relative term) to account for different use cases.

The program can load compiled shared libraries (.d1lin windows, .soin linux, and .dylib on
mac). Since they are shared libraries compiled into binaries, any programming languages
can be used to generate those. So far, the nadi_core library is available for Rust only. Using
that, plugins can be written and those functions can be made available from the system.

Nadi core automatically loads:

* internal plugins if feature functions is used in nadi_core to compile it,

+ external plugins in the directories inside the NADI_PLUGIN DIRS environmental variables.
The plugins must be compiled using the same nadi_core version and must have the same
internal ABI for data types.

The syntax for functions in plugins are same for internal and external plugins. While the way
to register the plugin differ slightly.

The difference between the internal and external plugins are that, internal plugins are com-
piled with the nadi_core and come with the program, while external plugins are separately
compiled and loaded through dynamic libraries.

The methods for writing the plugins are the same, except at the top level: to export plugins,
you have to use [nadi core::nadi plugin::nadi plugin] macro for external plugins while
[nadi core::nadi plugin::nadi internal plugin] for internal ones.

81

In the next sections we will go in detail about how to write plugins and load them in nadi.
14.2.1. Internal Plugins

Internal plugins come with the nadi system. They are only modified between the different
versions of Nadi.

The internal plugins provide core functionality of the Task system like data conversion,
parsing network/attribute files, logical operations, template rendering, etc.

Future planned internal plugin functions can be found in nadi-futures repository. Which in
itself is an external plugin.

14.2.2. External Plugins

External plugins are plugins that are their own separate programs that compile to a shared
library. The shared library has information about the name of the plugin, the functions that
are available, as well as the bytecode required to run the functions.

You have to use the nadi_core library and the macros available there to make the plugins.
Although it might be possible to write it without the macros (an example is provided), it is
strongly discouraged. The example only serves as a way to demonstrate the inner working
of the external plugins.

Some examples of external plugins are given in the nadi-plugins-rust repository.

An example of a complex external plugin can be found in the gis plugin from nadi-gis
repository.

14.2.2.0.1. Steps to create a Plugin

nadi CLI tool has a function that can generate a plugin template. Simply run the nadi
command with --new-plugin flag.

nadi --new-plugin <plugin-name>

This will create a directory with plugin’s name with Cargo.toml and src/lib.rs with some
sample codes for plugin functions. You can then edit them as per your need.

The generated files using nadi --new-plugin sample look something like this:

82

https://github.com/Nadi-System/nadi-futures
https://github.com/Nadi-System/nadi-plugins-rust
https://github.com/Nadi-System/nadi-plugins-rust
https://github.com/Nadi-System/nadi-gis
https://github.com/Nadi-System/nadi-gis

Cargo.toml:

[packagel
name = "sample"
version = "0.1.0"

edition = "2021"

[lib]
crate-type = ["cdylib"]

make sure you use the same version of nadi core, your nadi-system is in

[dependencies]

abi stable = "0.11.3"

nadi core = "0.7.0"
src/lib.rs:

use nadi core::nadi plugin::nadi plugin;

#[nadi plugin]
mod sample {
use nadi core::prelude::*;

/// The macros imported from nadi plugin read the rust function you
/// write and use that as a base to write more core internally that
/// will be compiled into the shared libraries. This means it'll
/// automatically get the argument types, documentation, mutability,
/// etc. For more details on what they can do, refer to nadi book.
use nadi_core::nadi plugin::{env_func, network func, node func};

/// Example Environment function for the plugin
///
/// You can use markdown format to write detailed documentation for the
/// function you write. This will be availble from nadi-help.
#[env_func(pre = "Message: ")]
fn echo(message: String, pre: String) -> String {

format! ("{}{}", pre, message)

/// Example Node function for the plugin

#[node_ func]

fn node name(node: &NodeInner) -> String {
node.name().to string()

83

/// Example Network function for the plugin
///
/// You can also write docstrings for the arguments, this syntax is not
/// a valid rust syntax, but our macro will read those docstrings, saves
/// it and then removes it so that rust does not get confused. This means
/// You do not have to write separate documentation for functions.
#[network func]
fn node first with attr(
net: &Network,
/// Name of the attribute to search
attrname: String,
) -> Option<String> {
for node in net.nodes() {
let node = node.lock();
if node.attr dot(&attrname).is ok() {
return Some(node.name().to string());

None

The plugin can be compiled with the cargo build or cargo build --release command, itll
generate the shared library in the target/debug or target/release folder. You can simply copy
it to directory in NADI_PLUGIN_DIRS for it to be loaded.

14.2.3. Functions

Plugin functions are very close to normal rust functions, with extra syntax for the function
arguments, and limited function argument and return types.

14.2.3.0.1. Function Types

There are 3 function types:
* environment

* node

* network

the macro used for each function type are availabel from nadi_core::nadi_plugin. All the
macro take optional list of key = value pairs that can act like default arguments to the
functions while called from the task system.

84

These macro will read the rust function and generate the necessary plugin code, function
signature, documentation, and will even save the original code so that users can browse it
through the nadi-help.

14.2.3.0.2. Function Arguments

There are 5 types of function arugments, that are denoted by the following attributes

macro attr | Type Supported Types
Node/Network &/& mut + NodeInner/Network
Normal arguments T: FromAttribute

#[relaxed] [Relaxed arguments T: FromAttributeRelaxed

#[args] Positional Arguments List &[Attribute]

#[kwargs] | Keyword Arguments AttrMap | &AttrMap

Users can not provide the argument Node/Network for node/network function as it is auto-
matically provided based on the context.

Furthermore, there are required and optional arguments. And users can optionally omit the
arguments that are of type oOption<T>, or have default value in the macro (e.g. safe = false
in the codes below).

For now, the function arguments except the Node or Network cannot be mut. But they can be
reference of Tif T satisfies the trait constraints, for example, instead of vec<String>, it can be
&[String]. But because the function context is evaluated for each node/network, there is no
optimization by using the references.

14.2.3.0.3. Return Types

Function Return can be empty, an attribute value, or an error. When a function returns
an error, the execution is halted. When it doesn’t return a value and an assignment is
performed, it will error as well.

The return type of the function should implement Into<FunctinRets, refer to the documen-
tation for nadi_core::functions::FunctionRet to see what types implement it. You can also
implement that for your own types.

You can simply use any type that satisfy the trait requirement mentioned above as a function
return and the nadi macros will convert them automatically for you.

85

https://docs.rs/nadi_core/latest/nadi_core/functions/enum.FunctionRet.html

14.2.3.0.4. Verbosity

In future versions the functions will also get a flag that will let them know how verbose the
functions can be. This will also come with a way to pass progress and other information
while the function is still running.

14.2.3.0.5. Examples

Refer to the nadi_core, and other plugin repositories for sample codes for plugin functions
as they are always up to date with the current version.

Here is an example containing render function that is available on all function types.

/// Render the template based on the given attributes
///
/// For more details on the template system. Refer to the String
/// Template section of the NADI book.
#[env_func(safe = false)]
fn render(
/// String template to render
template: &Template,
#[kwargs] keyval: &AttrMap,
/// if render fails keep it as it is instead of exiting
safe: bool,
) -> Result<String, String> {
let text = if safe {

keyval
.render(template)
.unwrap or else(]| | template.original().to string())
} else {
keyval.render(template).map err(|e| e.to string())?
}i
Ok (text)

/// Render the template based on the node attributes
///
/// For more details on the template system. Refer to the String
/// Template section of the NADI book.
#[node func(safe = false)]
fn render(
node: &Nodelnner,
/// String template to render

86

template: &Template,
/// if render fails keep it as it is instead of exiting
safe: bool,
) -> Result<String, String> {
let text = if safe {
node.render(template)

.unwrap or else(]| | template.original().to string())
} else {
node. render(template).map err(|e| e.to string())?
}i
Ok (text)

/// Render from network attributes
#[network func(safe = false)]
fn render(
network: &Network,
/// Path to the template file
template: &Template,
/// if render fails keep it as it is instead of exiting
safe: bool,
) -> Result<String, String> {
let text = if safe {

network
.render(template)
.unwrap _or else(]| | template.original().to string())
} else {
network.render(template).map err(|e| e.to string())?
}s
Ok (text)

14.2.4. Environment Functions

Environment functions are like any normal function on programming languages that take
arguments and run code. In Nadi environment functions can be called from any scope. For
example, if a node function and environement function share the same name, then in a
node task node function is called, but in network task env function is called.

Environment functions are denoted in the plugins with #[env_func] macro. All the arguments
this function takes need to be provided by user or through default values.

Here is an example of a environment function and in plugin logic.

87

/// Boolean and
#[env_func]

fn and(
/// List of attributes that can be cast to bool
#[args]
conds: &[Attributel],

) -> bool {

let mut ans = true;
for ¢ in conds {
ans = ans && bool::from attr relaxed(c).unwrap();

ans

This function can be called inside the task system in different context like follows:

env and(true, 12)
env.something = false
env and(something, true) == (something & true)

network and(what?, and(true, true))

Results:

true
true
false

14.2.5. Node Functions

Node functions are run for each node in the network (or a selected group of nodes). Hence,
it takes the first argument as & NodeInner or & mut NodeInner depending on the purpose of
the function. Immutable functions can be called from any place, while mutable functions
can only be called once on the outermost layer on the task.

Other arguments and the return types for node functions are the same as the environement
functions.

88

14.2.6. Network Functions

Network functions, like node functions take &Network or & mut Network as the firstargument. It
has the same restrictions as the env/node functions for the arguments and the return types.

89

15. User Reference

15.1. Example Usage

15.1.0.1. Ohio River Streamflow Routing Project

The Network for the flow routing is as follows:

network load file("./data/ohio.network")
network svg save(label="{ NAME}", outfile = "./output/ohio.svg", height=1000)

Results:

90

~\

DY Y S =N NN

sutersville
elizabeth2
natrona
emsworth
dashields
beaverfalls
montgomery
new-cumberland
pike-island
hannibal
willow-island
elizabeth
athens
mcconnelsville
belleville
racine
charleston
rc-byrd
branchland
ashland
grayson
greenup
higby
meldahl
brookville
perintown
hamilton
catawba
milford
markland
lockport
mcalpine
shepherdsville
cannelton
newburgh
calhoun
evansville
jt-myers
mountcarmel
old-shawneetown
golconda
smithland

91

15.1.1. Making Tables

<Node ID => { NAME}

<Title =>

{ description:case(title):repl(Ky,KY):repl(In,IN):repl(Wv,WV):repl(0h,OH)?}

>Latitude => {lat:f(4)}
>Longitude => {lon:f(4)}

Node ID Title Latitude | Longitude
smithland OHio River at Smithland Dam Smithland KY 37.1584 | -88.4262
golconda OHio River at Dam 51 at Golconda, Il 37.3578 | -88.4825
old-shawneetown | OHio River at Old Shawneetown, II-KY 37.6919| -88.1333
mountcarmel Wabash River at Mt. Carmel, II 38.3983 | -87.7564
jt-myers OHio River at Uniontown Dam, KY 37.7972 | -87.9983
evansville OHio River at Evansville, IN 37.9723 | -87.5764
calhoun Green River at Lock 2 at Calhoun, KY 37.5339 | -87.2639
newburgh Newburgh 37.9309 | -87.3722
cannelton OHio River at Cannelton Dam at Cannelton, IN | 37.8995 [-86.7055
shepherdsville Salt River at Shepherdsville, KY 37.9851 | -85.7175
mcalpine OHio River at Louisville, KY 38.2803 | —-85.7991
lockport Kentucky River at Lock 2 at Lockport, KY 38.4390 | -84.9633
markland OHio River at Markland Dam Near Warsaw, KY | 38.7748 | —-84.9644
milford Little Miami River at Milford OH 39.1714 | -84.2980
catawba Licking River at Catawba, KY 38.7103 | -84.3108
hamilton Great Miami River at Hamilton OH 39.3912 | -84.5722
perintown East Fork Little Miami River at Perintown OH 39.1370 | -84.2380
brookville Whitewater River at Brookville, IN 39.4075| -85.0129
meldahl Meldahl 38.7972 | -84.1705
higby Scioto River at Higby OH 39.2123 | -82.8638
greenup Greenup 38.6468 | -82.8608
grayson Little Sandy River at Grayson, KY 38.3301 | -82.9393
ashland OHio River at Ashland, KY 38.4812 | -82.6365
branchland Guyandotte River at Branchland, WV 38.2209 | -82.2026
rc-byrd Rc-Byrd 38.6816 | —-82.1883
charleston Kanawha River at Charleston, WV 38.3715| -81.7021
racine OHio River at Racine Dam, WV 38.9167 | -81.9121

92

Node ID Title Latitude | Longitude
belleville OHio River at Belleville Dam, WV 39.1190 | -81.7424
mcconnelsville Muskingum River at McConnelsville OH 39.6451 | -81.8499
athens Hocking River at Athens OH 39.3290 | -82.0876
elizabeth Little Kanawha River at Palestine, WV 39.0590 | -81.3896
willow-island Willow-Island 39.3605 | -81.3204
hannibal Hannibal 39.6671 | -80.8653
pike-island OHio River at Martins Ferry, OH 40.1051 | -80.7084
new-cumberland | New-Cumberland 40.5277 | -80.6276
montgomery Montgomery 40.6486 | -80.3855
beaverfalls Beaver River at Beaver Falls, PA 40.7634 | -80.3151
dashields OHio River at Sewickley, PA 40.5492 | -80.2056
emsworth Emsworth 40.5043 | -80.0889
natrona Allegheny River at Natrona, PA 40.6153 | -79.7184
elizabeth2 Monongahela River at Elizabeth, PA 40.2623 | -79.9012
sutersville Youghiogheny River at Sutersville, PA 40.2402 | -79.8067

Nadi style table with network information:

network load file("./data/ohio.network")
Inode load attrs("./data/attrs/{ NAME}.toml")

network clip()

network echo("../output/ohio-table.svg")
~Ind => =(+ (st+num 'INDEX) 1)
<Node ID => { NAME}

<Title =>

{ description:case(title):repl(Ky,KY):repl(In,IN):repl(Wv,WV):repl(0h,OH)?}

>Latitude => {lat:f(4)}
>Longitude => {lon:f(4)}

Error:

network function: "table to svg" not found

Old Result (needs graphics plugin):

93

Node ID Title Latitude Longitude

o sutersville Youghiogheny River at Sutersville, PA 40.2402 -79.8067

o elizabeth2 Monongahela River at Elizabeth, PA 40.2623 -79.9012

o natrona Allegheny River at Natrona, PA 40.6153 -79.7184
emsworth Emsworth 40.5043 -80.0889

l dashields OHio River at Sewickley, PA 40.5492 -80.2056
\ o beaverfalls Beaver River at Beaver Falls, PA 40.7634 -80.3151
./ montgomery Montgomery 40.6486 -80.3855
i new-cumberland New-Cumberland 40.5277 -80.6276
l pike-island OHio River at Martins Ferry, OH 40.1051 -80.7084
i hannibal Hannibal 39.6671 -80.8653
s willow-island Willow-Island 39.3605 -81.3204
o ¢€lizabeth Little Kanawha River at Palestine, WV 39.0590 -81.3896

o athens Hocking River at Athens OH 39.3290 -82.0876

o Imcconnelsville Muskingum River at McConnelsville OH 39.6451 -81.8499
belleville OHio River at Belleville Dam, WV 39.1190 -81.7424

l racine OHio River at Racine Dam, WV 38.9167 -81.9121
o charleston Kanawha River at Charleston, WV 38.3715 -81.7021
¢ rcbyrd Re-Byrd 38.6816 -82.1883
\ o branchland Guyandotte River at Branchland, WV 38.2209 -82.2026
./ ashland OHio River at Ashland, KY 38.4812 -82.6365
\ e grayson Little Sandy River at Grayson, KY 38.3301 -82.9393
¢// greenup Greenup 38.6468 -82.8608
o highby Scioto River at Highy OH 39.2123 -82.8638
./ meldahl Meldahl 38.7972 -84.1705
o brookville Whitewater River at Brookville, IN 39.4075 -85.0129

e perintown East Fork Little Miami River at Perintown OH 39.1370 -84.2380

e hamilton Great Miami River at Hamilton OH 39.3912 -84.5722

o catawba Licking River at Catawba, KY 38.7103 -84.3108

o milford Little Miami River at Milford OH 39.1714 -84.2980
markland OHio River at Markland Dam Near Warsaw, KY 38.7748 -84.9644

\ o lockport Kentucky River at Lock 2 at Lockport, KY 38.4390 -84.9633
./ mcalpine OHio River at Louisville, KY 38.2803 -85.7991
o Shepherdsville Salt River at Shepherdsville, KY 37.9851 -85.7175
./ cannelton OHio River at Cannelton Dam at Cannelton, IN 37.8995 -86.7055
s newhburgh Newburgh 37.9309 -87.3722
\ o calhoun Green River at Lock 2 at Calhoun, KY 37.5339 -87.2639
./ evansville OHio River at Evansville, IN 37.9723 -87.5764
s jt-myers OHio River at Uniontown Dam, KY 37.7972 -87.9983
\ e Imountcarmel Wabash River at Mt. Carmel, I1 38.3983 -87.7564
./ old-shawneetown OHio River at Old Shawneetown, II-KY 37.6919 -88.1333
l golconda OHio River at Dam 51 at Golconda, I1 37.3578 -88.4825
i smithland OHio River at Smithland Dam Smithland KY 37.1584 -88.4262

15.1.2. Generating Reports

So we write this template:

Ohio River Routing Project

94

<l-- --- 8<---:[smithland]: -->
Our basin Outlet is at { description:case(title):repl(Ky,KY)} with the total basin
area {basin area:f(1)} acre-ft.

The lower part of the Ohio basin are specifically important to us. Those are:

| ID | Basin Area | Length to Outlet |
[oememe=e- [semememenee- e |
<l-- --- 8<---:[greenup -> smithland]: -->

| { NAME} | {basin area:f(1)} | {length:f(2)} |
<l-- --- 8<--- -- >

We used 4 locks and dams in the ohio river as representative locks and dams as
below:

<l-- --- 8<---:["willow-island", racine,markland,smithland]: -->
- { NAME:repl(-,):case(title)?}

I[1(../data/{ NAME}.svg)

Which makes the table only for the main-stem ohio:

network load file("./data/ohio.network")
Inode load attrs("./data/attrs/{ NAME}.toml")
network clip()

network render("./data/ohio-report.template")

Results:
“./data/ohio-report.template”

15.1.3. Analysing Timeseries
15.1.3.1. Looking at Data Gaps

Couting the gaps in a csv data with all the nodes is easy. Let's look at the top 5 nodes with
data gaps.

network load file("./data/ohio.network")
network clip()
network csv_count na(

95

", /data/ts/observed.csv",

sort=true,
head = 5
)
Error:
----8<----

network function: "csv_count na" not found

Running it for two timeseries, and comparing them base don network information. We can
see the downstream part have more missing data on natural timeseries.

network load file("./data/ohio.network")

network csv_count na("./data/ts/observed.csv", outattr = "observed missing")
network csv_count na("./data/ts/natural.csv", outattr = "natural missing")
network table to svg(

template="

<Node=> { NAME}
>0bserved => {observed missing}
>Natural => {natural missing}

"
’

outfile="./output/natural-gaps.svg"

Error:

network function: "csv_count na" not found

Old Result:

96

Node Observed Natural

o Sutersville 0 303
e e€lizabeth2 0 382
° natrona 0 65
emsworth 1 48

! dashields 1 48
o beaverfalls 0 287
./ montgomery 1 50
l new-cumberland 1 51
! pike-island 1 48
! hannibal 1 53
! willow-island 1 66
o elizabeth 0 124
e athens 0 123
o Imcconnelsville 0 147
belleville 1 23

! racine 1 52
‘ o Charleston 0 136
Y rcbyrd 1 143
l/. branchland 33 316
ashland 1 139

e grayson 3 237
./ greenup 1 139
l . higby 0 123
/" meldahl 1 140
e brookville 0 1138
e perintown 0 1141
e hamilton 0 1102
e Catawba 0 1097
o milford 0 1142
markland 1 139

‘ o lockport 0 1142
./ mcalpine 1 160
l/. shepherdsville 0 1145
cannelton 1 159

! newburgh 1 169
‘ . calhoun 0 1156
./ evansville 1 1190
! jt-myers 1 1190
l e Mmountcarmel 0 1142
/" old-shawneetown 1 1126
! golconda 1 1131
l smithland 1 1131

15.1.4. Visualizing Data Gaps

To look at the temporal distribution of the gaps, we can use this function.

network load file("./data/ohio.network")
network csv_count na("./data/ts/natural.csv", outattr = "nat na")
network csv_data blocks svg(
csvfile="./data/ts/natural.csv",
outfile="./output/natural-blocks.svg",
label="{ NAME} ({=(/ (st+num 'nat na) 365.0):f(1)} yr)"
)
network clip()
network echo("../output/natural-blocks.svg")

Error:

network function: "csv _count na" not found

Old Result:

98

S T T T T T i T S

sutersville (0.8 yr)

elizabeth2 (1.0 yr)

natrona (0.2 yr)
emsworth (0.1 yr)

dashields (0.1 yr)

beaverfalls (0.8 yr)

montgomery (0.1 yr)

new-cumberland (0.1 yr)

pike-island (0.1 yr)

hannibal (0.1 yr)

willow-island (0.2 yr)

elizabeth (0.3 yr)

athens (0.3 yr)
mcconnelsville (0.4 yr)

belleville (0.1 yr)

racine (0.1 yr)
charleston (0.4 yr)

rc-byrd (0.4 yr)

branchland (0.9 yr)
ashland (0.4 yr)

grayson (0.6 yr)

greenup (0.4 yr)

higby (0.3 yr)

meldahl (0.4 yr)

brookville (3.1 yr)

perintown (3.1 yr)
hamilton (3.0 yr)

catawba (3.0 yr)

milford (3.1 yr)
markland (0.4 yr)

lockport (3.1 yr)

mcalpine (0.4 yr)
shepherdsville (3.1 yr)

cannelton (0.4 yr)

newburgh (0.5 yr)

calhoun (3.2 yr)

evansville (3.3 yr)

jt-myers (3.3 yr)

mountcarmel (3.1 yr)
old-shawneetown (3.1 yr)

golconda (3.1 yr)

smithland (3.1 yr)

network load file("./data/ohio.network")

network csv_count na("./data/ts/observed.csv", outattr

network csv_data blocks svg(
csvfile="./data/ts/observed.csv",
outfile="./output/observed-blocks.svg",
label="{ NAME} ({obs na})"

99

"obs na")

)
network clip()
network echo("../output/observed-blocks.svg")

Error:

network function: "csv_count na" not found

Old Result:

100

SRR Tl "alin ia Vip === Ny Ve Vi T e i S

sutersville (0)
elizabeth2 (0)
natrona (0)
emsworth (1)
dashields (1)
beaverfalls (0)
montgomery (1)
new-cumberland (1)
pike-island (1)
hannibal (1)
willow-island (1)
elizabeth (0)
athens (0)
mcconnelsville (0)
belleville (1)
racine (1)
charleston (0)
rc-byrd (1)
branchland (33)
ashland (1)
grayson (3)
greenup (1)
higby (0)
meldahl (1)
brookville (0)
perintown (0)
hamilton (0)
catawba (0)
milford (0)
markland (1)
lockport (0)
mcalpine (1)
shepherdsville (0)
cannelton (1)
newburgh (1)
calhoun (0)
evansville (1)
jt-myers (1)
mountcarmel (0)
old-shawneetown (1)
golconda (1)
smithland (1)

101

16. Internal Plugins

There are some plugins that are provided with the nadi_core library. They are part of the
library, so users can directly use them.

For example in the following tasks file, the functions that are highlighted are functions
available from the core plugins. Other functions need to be loaded from plugins.

sample .tasks file which is like a script with functions
node<inputsfirst> print attrs("uniqueID")

node show node()

network save graphviz("/tmp/test.gv")
node<inputsfirst>.cum val = node.val + sum(inputs.cum_val);

node[WV04113,WV04112,WV04112] print attr toml("testattr2")
node render("{NAME} {uniqueID} { Dam Height (Ft)?}")
node list attr("; ")
some functions can take variable number of inputs
network calc_attr errors(
"Dam_Height (Ft)",
"Hydraulic Height (Ft)",
"rmse", "nse", "abserr"
)
node sum_safe("Latitude")
node<inputsfirst> render("Hi {SUM _ATTR}")
multiple line for function arguments
network save table(
"test.table",
"/tmp/test.tex",
true,
radius=0.2,
start = 2012-19-20,
end = 2012-19-23 12:04
)
node.testattr = 2
node set attrs render(testattr2 = "{testattr:calc(+2)}")
node[WV04112] render("{testattr} {testattr2}")

here we use a complicated template that can do basic logic handling
node set attrs render(
testattr2 = "=(if (and (st+has 'Latitude) (> (st+num 'Latitude) 39)) 'true

'false)"
)

same thing can be done if you need more flexibility in variable names

102

node load toml string(

"testattr2 = =(if (and (st+has 'Latitude) (> (st+num 'Latitude) 39))

'false)"

)

selecting a list of nodes to run a function
node[
comment here?

Wve4113,
Wve4112

] print attr toml("testattr2")
selecting a path
node[WV04112 -> WV04113] render("=(> 2 3)")

16.1. Attributes

16.1.0.1. strmap

env

attributes.strmap(

attr: '& str',

attrmap: '& AttrMap',

default: 'Option < Attribute >'

16.1.0.1.1. Arguments

* attr: '& str' =>Value to transform the attribute
* attrmap: '& AttrMap' => Dictionary of key=value to map the data to
* default: 'Option < Attribute >' => Default value if key not found in attrmap

map values from the attribute based on the given table

env
env
env
env

.val = strmap("Joe", {Dave = 2, Joe = 20});

assert eq(val, 20)

.val2 = strmap("Joe", {Dave=2}, default = 12);

assert _eq(val2, 12)

16.1.0.2. parse_attr

env

attributes.parse attr(toml: '& str')

103

"true

16.1.0.2.1. Arguments
* toml: '& str' =>String to parse into attribute

Parse attribute from string

env assert eq(parse attr("true"), true)

env assert eq(parse attr("123"), 123)

env assert eq(parse attr("12.34"), 12.34)

env assert _eq(parse attr("\"my value\""), "my value")

env assert eq(parse attr("1234-12-12"), 1234-12-12)
16.1.0.3. parse_attrmap
env attributes.parse attrmap(toml: 'String')

16.1.0.3.1. Arguments
* toml: 'String' => String to parse into attribute

Parse attribute map from string

env assert eq(parse attrmap("y = true"), {y = true})
env assert eq(parse attrmap(

. [1234-12-12, truel"),

[1234-12-12, truel}

X
{x
)

16.1.0.4. get

env attributes.get(
parent: 'Attribute’,
index: 'Attribute’,
default: 'Option < Attribute >'

16.1.0.4.1. Arguments

* parent: 'Attribute' => Array or AttrMap Attribute to index
* index: 'Attribute' =>Index value (Integer for Array, String for AttrMap)

104

* default: 'Option < Attribute >' => Default value if the index is not present

get the choosen attribute from Array or AttrMap

env.some_ar

]
—

"this", 12, truel;
{x =
env assert eq(get(some_ar, 0), "this")
env assert eq(get(some_ar, 2), true)
(
(

env.some_am

env assert eq(get(some _am, "x"), "this")

"this", y = [12, truel};

env assert eq(get(some _am, "y"), [12, truel)

16.1.0.5. powi

env attributes.powi(value: 'f64', power:

16.1.0.5.1. Arguments

* value: 'f64' =>base value

* power: 'i64' =>

Integer power

env assert eq(powi(10.0, 2), 100.0)

16.1.0.6. powf

env attributes.powf(value: 'f64', power:

16.1.0.6.1. Arguments

e value: 'f64' =>base value

* power: 'f64' =>

Float power

env assert _eq(powf(100.0, 0.5), 10.0)

'i64"')

'fo4')

105

16.1.0.7. exp

env attributes.exp(value: 'f64')

16.1.0.7.1. Arguments
* value: 'f64' =>

Exponential

env assert _eq(log(exp(5.0)), 5.0)

16.1.0.8. sqrt

env attributes.sqrt(value: 'f64')

16.1.0.8.1. Arguments
* value: 'fe64' =>

Square Root

env assert eq(sqrt(25.0), 5.0)

16.1.0.9. log

env attributes.log(value: 'f64', base:

16.1.0.9.1. Arguments

* value: 'f64' =>

* base: 'Option < f64 >' =

'‘Option < f64 >')

Logarithm of a value, natural if base not given

env assert eq(log(exp(2.0)), 2.0)
env assert eq(log(2.0, 2.0), 1.0)

106

16.1.0.10. float_div

env attributes.float div(valuel: 'f64', value2: 'f64')

16.1.0.10.1. Arguments

* valuel: 'f64' =>numerator
e value2: 'f64' =>denominator

Float Division (same as / operator)

env assert eq(float div(10.0, 2), 10.0 / 2)

16.1.0.11. float_mult

env attributes.float mult(valuel: 'f64', value2: 'f64')

16.1.0.11.1. Arguments

e valuel: 'f64' =>numerator
e value2: 'f64' =>denominator

Float Multiplication (same as * operator)

env assert eq(float mult(5.0, 2), 5.0 * 2)

16.1.1. Node Functions

node attributes.load attrs(filename: 'PathBuf')

16.1.1.0.1. Arguments
*+ filename: 'PathBuf' => Template for the filename to load node attributes from

Loads attrs from file for all nodes based on the given template

107

16.1.1.0.2. Arguments

+ filename: Template for the filename to load node attributes from
* verbose: print verbose message

The template will be rendered for each node, and that filename from the rendered template
will be used to load the attributes.

16.1.1.0.3. Errors

The function will error out in following conditions:
+ Template for filename is not given,
* The template couldn’t be rendered,
* There was error loading attributes from the file.

16.1.1.1. print_all_attrs

node attributes.print all attrs()

16.1.1.1.1. Arguments
Print all attrs in a node

No arguments and no errors, it'll just print all the attributes in a node with node: :attr=val
format, where,

* node is node name

+ attr is attribute name

+ val is attribute value (string representation)

16.1.1.2. print_attrs

node attributes.print attrs(*attrs, name: 'bool' = false)

16.1.1.2.1. Arguments

* *attrs =>

* name: 'bool' = false=>

Print the given node attributes if present

108

16.1.1.2.2. Arguments

* attrs,... : list of attributes to print
* name: Bool for whether to show the node name or not

16.1.1.2.3. Error

The function will error if
+ list of arguments are not String
* the name argument is not Boolean

The attributes will be printed in key=val format.

16.1.1.3. set_attrs

node attributes.set attrs(**attrs)

16.1.1.3.1. Arguments
« **attrs => Key value pairs of the attributes to set
Set node attributes

Use this function to set the node attributes of all nodes, or a select few nodes using the
node selection methods (path or list of nodes)

16.1.1.3.2. Error
The function should not error.
16.1.1.3.3. Example

Following will set the attribute a2d to true for all nodes from Ato D

network load str("A -> B\n B -> D");
node[A -> D] set attrs(a2d = true)

This is equivalent to the following:

node[A->D].a2d = true;

109

16.1.1.4. get_attr

node attributes.get attr(attr: '& str', default: 'Option < Attribute >')

16.1.1.4.1. Arguments

* attr: '& str' =>Name of the attribute to get
* default: 'Option < Attribute >' => Default value if the attribute is not found

Retrive attribute

network load str("A -> B\n B -> D");
node assert eq(get attr("NAME"), NAME);

16.1.1.5. has_attr

node attributes.has attr(attr: '& str')

16.1.1.5.1. Arguments
e attr: '& str' => Name of the attribute to check

Check if the attribute is present

network load str("A -> B\n B -> D");
node.x = 90;

node assert(has attr("x"))

node assert(!has attr("y"))

16.1.1.6. first_attr

node attributes.first attr(attrs: '& [String]', default: 'Option < Attribute >')

16.1.1.6.1. Arguments

s attrs: '& [String]' => attribute names
¢ default: 'Option < Attribute >' => Default value if not found

110

Return the first Attribute that exists

This is useful when you have a bunch of attributes that might be equivalent but are using
different names. Normally due to them being combined from different datasets.

network load str("A -> B\n B -> D");

node.x = 90;

node assert eq(first attr(["y", "x"1), 90)
node assert eq(first attr(["x", "NAME"]), 90)

16.1.1.7. set_attrs_ifelse

node attributes.set attrs ifelse(cond: 'bool', **values)

16.1.1.7.1. Arguments

* cond: 'bool' => Condition to check
* *xvalues => key = [val1, val2] where key is set as first if cond is true else second

if else condition with multiple attributes

network load str("a -> b");
env.some_condition = true;

node set attrs ifelse(
env.some_condition,

vall [1, 2],

val2 ["a", "b"]

)i

env assert eq(nodes.vall, [1, 1])

env assert eq(nodes.val2, ["a", "a"l)

This is equivalent to using the if-else expression directly,

node.vall = if (env.some condition) {1} else {2};
env assert eq(nodes.vall, [1, 1])

Furthermore if-else expression will give a lot more flexibility than this function in normal
use cases. But this function is useful when you have to do something in a batch.

111

16.1.1.8. set_attrs_render

node attributes.set attrs render(**kwargs)

16.1.1.8.1. Arguments
* **kwargs => key value pair of attribute to set and the Template to render
Set node attributes based on string templates

This renders the template for each node, then it sets the values from the rendered results.

network load str("a -> b");
node set attrs render(vall = "Node: { NAME}");
node[a] assert eq(vall, "Node: a")

16.1.1.9. load_toml_render

node attributes.load toml render(toml: '& Template', echo: 'bool' = false)

16.1.1.9.1. Arguments

* toml: '& Template' => String template to render and load as toml string
* echo: 'bool' = false => Print the rendered toml or not

Set node attributes by loading a toml from rendered template

This function will render a string, and loads it as a toml string. This is useful when you need
to make attributes based on some other variables that you can combine using the string
template system.

In most cases it is better to use the string manipulation functions and other environmental
functions to get new attribute values to set.

network load str("a -> b");
node load toml render("label = \\\"Node: { NAME}\\\"")
node assert eq(label, render("Node: { NAME}"))

112

16.1.2. Network Functions

network attributes.set attrs(**attrs)

16.1.2.0.1. Arguments
« **attrs => key value pair of attributes to set
Set network attributes
16.1.2.0.2. Arguments

* key=value - Kwargs of attr = value

network set attrs(val = 23.4)
network assert eq(val, 23.4)

16.1.2.1. set_attrs_render

network attributes.set attrs render(**kwargs)

16.1.2.1.1. Arguments
* **kwargs => Kwargs of attr = String template to render
Set network attributes based on string templates

It will set the attribute as a String

network.val = 23.4
network set attrs render(val2 = "{val}05")
network assert eq(val2, "23.405")

113

16.2. Command

16.2.0.1. command

node command.command (
cmd: '& Template',
verbose: 'bool' = true,
echo: 'bool' = false

16.2.0.1.1. Arguments

* cmd: '& Template' => String Command template to run
* verbose: 'bool' = true => Show the rendered version of command, and other messages
* echo: 'bool' = false => Echo the stdout from the command

Run the given template as a shell command.

Run any command in the shell. The standard output of the command will be consumed and
if there are lines starting with nadi:var: and followed by key=val pairs, it'll be read as new
attributes to that node.

For example if a command writes nadi:var:name="Joe" to stdout, then the for the current
node the command is being run for, name attribute will be set to Joe. This way, you can write
your scripts in any language and pass the values back to the NADI system.

It will also print out the new values or changes from old values, if verbose is true.
16.2.0.1.2. Errors

The function will error if,

* The command template cannot be rendered,

« The command cannot be executed,

* The attributes from command'’s stdout cannot be parsed properly

network load str("a -> b");
node command("echo 'nadi:var:sth={NAME}'");
node assert eq(sth, NAME)

114

16.2.0.2. run

node command. run(

command: str',
inputs: str',
outputs: str',
verbose: 'bool' = true,
echo: 'bool' = false
)
16.2.0.2.1. Arguments

* command: '& str' =>Node Attribute with the command to run
* inputs: '& str' =>Node attribute with list of input files

* outputs: '& str' =>Node attribute with list of output files

* verbose: 'bool' = true => Print the command being run

* echo: 'bool' = false => Show the output of the command

Run the node as if it's a command if inputs are changed

This function will not run a command node if all outputs are older than all inputs. This is
useful to networks where each nodes are tasks with input files and output files.

16.2.1. Network Functions

network command.parallel(
cmd: Template',
workers: 'i64' = 16,
verbose: 'bool' = true,
echo: 'bool' = false

16.2.1.0.1. Arguments

* cmd: '& Template' => String Command template to run

* workers: 'i64' = 16 => Number of workers to run in parallel
* verbose: 'bool' = true =>Print the command being run

* echo: 'bool' = false => Show the output of the command

Run the given template as a shell command for each nodes in the network in parallel.

115

Other than parallel execution this is same as the node function command

network load str("a -> b");
network parallel("echo 'nadi:var:sth={NAME}'");
node assert eq(sth, NAME)

16.2.1.1. command

network command.command (
cmd: 'Template',
verbose: 'bool' = true,
echo: 'bool' = false

16.2.1.1.1. Arguments

* cmd: 'Template' => String Command template to run
* verbose: 'bool' = true => Print the command being run
* echo: 'bool' = false => Show the output of the command

Run the given template as a shell command.

Run any command in the shell. The standard output of the command will be consumed
and if there are lines starting with nadi:var: and followed by key=val pairs, it'll be read as
new attributes to the network. If you want to pass node attributes add node name with
nadi:var:name: as the prefix for key=val.

See node command.command for more details as they have the same implementation

The examples below run echo command to set the variables, you can use any command that
are scripting languages (python, R, Julia, etc) or individual programs.

network load str("a -> b");

network command("echo 'nadi:var:sth=123'");
network assert eq(sth, 123)

network command("echo 'nadi:var:a:sth=123'");
node[a] assert eq(sth, 123)

116

16.3. Connections

16.3.0.1. load_file

network connections.load file(file: 'PathBuf', append: 'bool' = false)

16.3.0.1.1. Arguments

+ file: 'PathBuf' => File to load the network connections from
* append: 'bool' = false => Append the connections in the current network

Load the given file into the network
This replaces the current network with the one loaded from the file.

16.3.0.2. load_str
network connections.load str(contents: '& str', append: 'bool' = false)

16.3.0.2.1. Arguments

* contents: '& str' =>String containing Network connections
* append: 'bool' = false => Append the connections in the current network

Load the given file into the network

This replaces the current network with the one loaded from the file.

network load str("a -> b");
env assert eq(nodes.NAME, ["b", "a"l)

16.3.0.3. load_edges

network connections.load edges(edges: '& [(String, String)]', append: 'bool' =
false)

16.3.0.3.1. Arguments

* edges: '& [(String, String)]' => String containing Network connections

117

* append: 'bool' = false => Append the connections in the current network
Load the given edges into the network

This replaces the current network with the one loaded from the file.

network load edges([["a", "b"]l, ["b", "c"11);
env assert eq(nodes.NAME, ["c", "b", "a"])

16.3.0.4. subset

network connections.subset(filter: '& [bool]', keep: 'bool' = true)

16.3.0.4.1. Arguments

e filter: '& [bool]' =>
* keep: 'bool' = true => Keep the selected nodes (false = removes the selected)

Take a subset of network by only including the selected nodes

network load str("a -> b\n b->c");
node[a->b].sth = true;

node[c].sth = false;

network subset(nodes.sth);

env assert eq(nodes.NAME, ["b", "a"l)

16.3.0.5. save file

network connections.save file(
file: 'PathBuf',

quote all: 'bool' = true,
graphviz: 'bool' = false
)
16.3.0.5.1. Arguments

* file: 'PathBuf' => Path to the output file

* quote all: 'bool' = true => quote all node names; if false, doesn’t quote valid identifier
names

* graphviz: 'bool' = false =>wrap the network into a valid graphviz file

118

Save the network into the given file

For more control on graphviz file writing, use save_graphviz from graphviz plugin instead.

16.4. Core

16.4.0.1. count
env core.count(vars: '& [bool]')

16.4.0.1.1. Arguments
* vars: '& [bool]' =

Count the number of true values in the array
env assert eq(count([true, false, true, falsel), 2)
16.4.0.2. type_name
env core.type name(value: 'Attribute', recursive: 'bool' = false)

16.4.0.2.1. Arguments

* value: 'Attribute’' => Argument to get type
* recursive: 'bool' = false => Recursively check types for array and table

Type name of the arguments

env assert eq(type name(true), "Bool")

env assert eq(type name([true, 12]), "Array")

env assert eq(type name([true, 12], recursive=true), ["Bool", "Integer"])
env assert eq(type name("true"), "String")

(
(
(
(

16.4.0.3. isna

env core.isna(val: 'f64')

119

16.4.0.3.1. Arguments
* val: 'f64' =>

check if a float is nan

env assert(isna(nan + 5))
16.4.0.4. isinf

env core.isinf(val: 'f64')

16.4.0.4.1. Arguments
* val: 'f64' =>

check if a float is +/- infinity
env assert(isinf(12.0 / 0))
16.4.0.5. float
env core.float(value: 'Attribute', parse: 'bool' = true)

16.4.0.5.1. Arguments

* value: 'Attribute' =>Argument to convert to float
* parse: 'bool' = true => parse string to float

make a float from value

env assert eq(float(5), 5.0)

env assert eq(float("5.0"), 5.0)
16.4.0.6. str
env core.str(value: 'Attribute', quote: 'bool' = false)

120

16.4.0.6.1. Arguments

* value: 'Attribute' => Argument to convert to float
* quote: 'bool' = false =>quote it if it's literal string

make a string from value

env assert eq(str(nan + 5), "nan")

env assert eq(str(2 + 5), "7")

env assert eq(str(12.34), "12.34")

env assert eq(str("nan + 5"), "nan + 5")

env assert eq(str("true", quote=true), "\"true\"")

16.4.0.7. int

env core.int(
value: 'Attribute’,
parse: 'bool' = true,
round: 'bool' = true,
strfloat: 'bool' = false

16.4.0.7.1. Arguments

* value: 'Attribute' => Argument to convert to int

* parse: 'bool' = true => parse string to int

* round: ‘'bool' = true =>round float into integer

* strfloat: 'bool' = false => parse string first as float before converting to int

make an int from the value

env assert eq(int(5.0), 5)

env assert eq(int(5.1), 5)

env assert eq(int("45"), 45)
(

env assert eq(int("5.0", strfloat=true), 5)

16.4.0.8. array

env core.array(*attributes)

121

16.4.0.8.1. Arguments
* *attributes => List of attributes

make an array from the arguments

env assert eq(array(5, true), [5, true])

16.4.0.9. attrmap

env core.attrmap(**attributes)

16.4.0.9.1. Arguments
e **attributes => name and values of attributes

make an attrmap from the arguments

env assert eq(attrmap(val=5), {val=5})

16.4.0.10. json

env core.json(value: 'Attribute')

16.4.0.10.1. Arguments
* value: 'Attribute' => attribute to format

format the attribute as a json string

env assert eq(json(5), "5")
env assert eq(json([5, truel), "[5, truel")
env assert _eq(json({a=5}), "{\"a\": 5}")

16.4.0.11. append

env core.append(array: 'Vec < Attribute >', value: 'Attribute')

122

16.4.0.11.1. Arguments

* array: 'Vec < Attribute >' => List of attributes

* value: 'Attribute' =>

append a value to an array

env assert _eq(append([4]1, 5), [4, 5])

16.4.0.12. length

env core.length(value: '& Attribute')

16.4.0.12.1. Arguments
* value: '& Attribute' => Array or a HashMap

length of an array or hashmap

env assert eq(length([4, 51), 2)
env assert _eq(length({x=4, y=5}), 2)

16.4.0.13. year

env core.year(value: 'Attribute')

16.4.0.13.1. Arguments
* value: 'Attribute' => Date or DateTime

year from date/datetime

env assert eq(year(1223-12-12), 1223)
env assert eq(year(1223-12-12T12:12), 1223)
env assert eq(year(1223-12-12 12:12:08), 1223)

123

16.4.0.14. month

env core.month(value: 'Attribute')

16.4.0.14.1. Arguments
* value: 'Attribute' => Date or DateTime

month from date/datetime

env assert _eq(month(1223-12-14), 12)
env assert eq(month(1223-12-14T15:19), 12)

16.4.0.15. day

env core.day(value: 'Attribute')

16.4.0.15.1. Arguments
* value: 'Attribute' => Date or DateTime

day from date/datetime

env assert eq(day(1223-12-14), 14)
env assert eq(day(1223-12-14T15:19), 14)

16.4.0.16. min_num

env core.min _num(vars: 'Vec < Attribute >', start: 'Attribute' = Float(inf))

16.4.0.16.1. Arguments

* vars: 'Vec < Attribute >'=
* start: 'Attribute' = Float(inf) =>

Minimum of the variables

124

env assert _eq(min _num([1, 2, 3]), 1)
env assert eq(min num([1.0, 2, 3]), 1.0)
env assert eq(min num([1, 2, 3], start = 0), 0)

16.4.0.17. max_num
env core.max_num(vars: 'Vec < Attribute >', start: 'Attribute' = Float(-inf))

16.4.0.17.1. Arguments

* vars: 'Vec < Attribute >' =>
* start: 'Attribute' = Float(-inf) =>

Minimum of the variables

env assert eq(max _num([1, 2, 3.0]), 3.0)
env assert _eq(max num([1.0, 2, 3]), 3)
env assert eq(max num([1l, inf, 3], 0), inf)

16.4.0.18. min
env core.min(vars: 'Vec < Attribute >', start: 'Attribute’)

16.4.0.18.1. Arguments

* vars: 'Vec < Attribute >' =>

* start: 'Attribute' =>

Minimum of the variables

env assert eq(min([1, 2, 3], 100), 1)

env assert eq(min([1.0, 2, 3], 1600), 1.0)

env assert eq(min([1, 2, 3], inf), 1)

env assert eq(min(["b", "a", "d"], "zzz"), "a")

(
(
(
(

16.4.0.19. max

env core.max(vars: 'Vec < Attribute >', start: 'Attribute')

125

16.4.0.19.1. Arguments

* vars: 'Vec < Attribute >' =
* start: 'Attribute' =>

Maximum of the variables

[1, 2, 31, -1), 3)

[1.0, 2, 3], -1), 3)

[1, 2, 3], -inf), 3)

["b", "a", "d"], ""), "d")

env assert _eq(max
env assert eq(max
env assert eq(max
env assert eq(max

—_—— =

16.4.0.20. sum

env core.sum(vars: 'Vec < Attribute >', start: 'Attribute' = Integer(0))

16.4.0.20.1. Arguments

* vars: 'Vec < Attribute >'=
* start: 'Attribute' = Integer(0) =>

Sum of the variables

This function is for numeric attributes. You need to give the start attribute so that data type
is valid.

env assert eq(sum([2, 3, 4]1), 9)
env assert eq(sum([2, 3, 4], start=0.0), 9.0)

16.4.0.21. prod

env core.prod(vars: 'Vec < Attribute >', start: 'Attribute' = Integer(1l))

16.4.0.21.1. Arguments

* vars: 'Vec < Attribute >' =

* start: 'Attribute' = Integer(l) =>

Product of the variables

126

This function is for numerical values/attributes

env assert eq(prod([1, 2, 3]), 6)
env assert eq(prod([1.0, 2, 3]), 6.0)

16.4.0.22. unique_str

env core.unique str(vars: 'Vec < String >'")

16.4.0.22.1. Arguments
* vars: 'Vec < String >' =
Get a list of unique string values

The order of the strings returned is not guaranteed

env.uniq = unique str(["hi", "me", "hi", "you"l);
env assert eq(length(uniq), 3)

16.4.0.23. count_str

env core.count str(vars: 'Vec < String >')

16.4.0.23.1. Arguments
* vars: 'Vec < String >' =

Get a count of unique string values

env assert eq(

count str(["Hi", "there", "Deliah", "Hi"l),
{Hi = 2, there = 1, Deliah=1}

)

16.4.0.24. concat

env core.concat(*vars, join: '& str' = "")

127

16.4.0.24.1. Arguments

* *vars =>

* join: '& str' = ""=>

Concat the strings

env assert eq(concat("Hello", "World", join=" "), "Hello World")

16.4.0.25. range

env core.range(start: 'i64', end: 'i64'")

16.4.0.25.1. Arguments

* start: 'i64' =>

* end: 'i64' =>

Generate integer array, end is not included

env assert eq(range(l, 5), [1, 2, 3, 4])

16.4.0.26. assert

env core.assert(condition: 'bool', note: 'String' = "Condition False")

16.4.0.26.1. Arguments

* condition: 'bool' =>

* note: 'String' = "Condition False" =>
Assert the condition is true

Use assert_eg/assert_neq if you are testing equality for better error message.

env assert(true)

128

16.4.0.27. assert_eq

env core.assert eq(left: 'Attribute', right: 'Attribute')

16.4.0.27.1. Arguments

* left: 'Attribute' =
* right: 'Attribute' =

Assert the two values are equal

This function is for testing the code, as well as for terminating the execution when certain
values are not equal

env assert eq(1l, 1)
env assert eq(true, 1 > 0)
env assert eq("string val", concat("string", " ", "val"))

16.4.0.28. assert_neq

env core.assert neq(left: 'Attribute', right: 'Attribute')

16.4.0.28.1. Arguments

* left: 'Attribute' =>
* right: 'Attribute' =>

Assert the two values are not equal

This function is for testing the code, as well as for terminating the execution when certain
values are not equal

env assert neq(l, 1.0)
env assert neq(true, 1 < 0)
env assert neq("string val", concat("string", "val"))

129

16.4.1. Node Functions

node core.inputs count()

16.4.1.0.1. Arguments

Count the number of input nodes in the node

network load str("a -> b\n b -> d\n c -> d")
node assert eq(inputs count(), length(inputs.))

16.4.1.1. inputs_attr

node core.inputs attr(attr: 'String' = "NAME")

16.4.1.1.1. Arguments
* attr: 'String' = "NAME" => Attribute to get from inputs
Get attributes of the input nodes

This is equivalent to using the inputs keyword

network load str("a -> b\n b -> d\n c -> d")
node assert eq(inputs attr("NAME"), inputs.NAME)

16.4.1.2. has_outlet

node core.has outlet()

16.4.1.2.1. Arguments
Node has an outlet or not

This is equivalent to using output._?, as _is a dummy variable that will always be presentin
all cases, it being absent is because there is no output/outlet of that node.

130

network load str("a -> b\n b -> d\n c -> d")
node assert eq(has outlet(), output. ?)

16.4.1.3. output_attr

node core.output attr(attr: 'String' = "NAME")
16.4.1.3.1. Arguments
* attr: 'String' = "NAME" => Attribute to get from inputs

Get attributes of the output node

This is equivalent to using the output keyword

network load str("a -> b\n b -> d\n c -> d")
node(output. ?) assert eq(output attr("NAME"), output.NAME)

16.4.2. Network Functions

network core.count(vars: 'Option < Vec < bool > >')

16.4.2.0.1. Arguments
* vars: 'Option < Vec < bool > >'=

Count the number of nodes in the network

network assert eq(count(), 0)

network load str("a -> b")

network assert eq(count(), 2)

node.sel = INDEX < 1

network assert eq(count(nodes.sel), 1)

16.4.2.1. outlet

network core.outlet()

131

16.4.2.1.1. Arguments

Get the name of the outlet node

network load str("a -> b")
network assert eq(outlet(), "b")

16.4.2.2. node_attr

network core.node attr(name: 'String', attribute: 'String' = " "

16.4.2.2.1. Arguments

* name: 'String' =>name of the node
* attribute: 'String' = "_" => attribute to get

Get the attr of the provided node

network load str("a -> b")
network assert eq(node attr("a", "NAME"), "a")

16.5. Debug

16.5.0.1. sleep

env debug.sleep(time: 'u64' = 1000)

16.5.0.1.1. Arguments
* time: 'u64' = 1000 =>
sleep for given number of milliseconds

16.5.0.2. debug

env debug.debug(*args, **kwargs)

132

16.5.0.2.1. Arguments

* *args => Function arguments
* **kwargs => Function Keyword arguments

Print the args and kwargs on this function

This function will just print out the args and kwargs the function is called with. This is for
debugging purposes to see if the args/kwargs are identified properly. And can also be used
to see how the nadi system takes the input from the function call.

16.5.0.3. echo

env debug.echo(
line: 'String’,
error: 'bool' = false,
newline: 'bool' = true

16.5.0.3.1. Arguments

* line: 'String' =>line to print

* error: 'bool' = false => print to stderr instead of stdout
* newline: 'bool' = true => print newline at the end

Echo the string to stdout or stderr

This simply echoes anything given to it. This can be used in combination with nadi tasks that
create files (image, text, etc). The echo function can be called to get the link to those files
back to the stdout.

Also useful for nadi preprocessor.

16.5.0.4. clip

env debug.clip(error: 'bool' = false)

16.5.0.4.1. Arguments

* error: 'bool' = false => printin stderr instead of in stdout

133

Echo the ——8<—- line for clipping syntax

This function is a utility function for the generation of nadi book. This prints out the
---8<---- line when called, so that mdbook preprocessor for nadi knows where to clip the
output for displaying it in the book.

This makes it easier to only show the relevant parts of the output in the documentation
instead of having the user see output of other unrelated parts which are necessary for
generating the results.

16.5.0.4.2. Example

Given the following tasks file:

,ignore

net load file("...")

net load attrs("...")

net clip()

net render("{ NAME} {attrl}")

The clip function’s output will let the preprocessor know that only the parts after that are
relevant to the user. Hence, it'll discard outputs before that during documentation gener-
ation.

16.6. Logic

16.6.0.1. ifelse

env logic.ifelse(
cond: 'bool"’,
iftrue: 'Attribute’,
iffalse: 'Attribute’

16.6.0.1.1. Arguments

* cond: 'bool' => Attribute that can be cast to bool value
* iftrue: 'Attribute' => Output if cond is true
* iffalse: 'Attribute' => Output if cond is false

134

Simple if else condition

This is similar to using the if-else expression, the difference being the condition is relaxed.
For example, for if-else the condition should be true or false, but for this function, the
attribute can be anything that can be cast as true or false. (e.g. 1 => true, 0 => false)

true, 1, 2), 1)
false, 1, 2), 2)
100.0, 1, 2), 1)
true, 1, 2), if (true) {1} else {2})

env assert eq(ifelse
env assert eq(ifelse
env assert eq(ifelse
env assert eq(ifelse

P

16.6.0.2. gt

env logic.gt(a: '& Attribute', b: '& Attribute')

16.6.0.2.1. Arguments

* a: '& Attribute' => first attribute
* b: '& Attribute' => second attribute

Greater than check

env assert eq(gt(1, 2), 1 > 2)
env assert eq(gt(1.0, 20), 1.0 > 20)

16.6.0.3. It

env logic.lt(a: '& Attribute', b: '& Attribute')

16.6.0.3.1. Arguments

* a: '& Attribute' => first attribute
* b: '& Attribute' => second attribute

Less than check

env assert eq(lt(1, 2), 1 < 2)
env assert eq(lt(1.0, 20), 1.0 < 20)

135

16.6.0.4. eq

env logic.eq(a: '& Attribute', b: '& Attribute')

16.6.0.4.1. Arguments

* a: '& Attribute' => first attribute
* b: '& Attribute' => second attribute

Equality than check

env assert eq(eq(l, 2), 1 == 2)
env assert eq(eq(2.0, 2.0), 2.0 == 2.0)
env assert eq(eq(2.0, 2), 2.0 == 2)

16.6.0.5. and

env logic.and(*conds)

16.6.0.5.1. Arguments
« *conds => List of attributes that can be cast to bool
Boolean and

Similar to the operator & but the values are cast to boolean

env assert eq(and(true, true), true)
env assert eq(and(true, false), false)
env assert eq(and(true, false), false & true)

16.6.0.6. or

env logic.or(*conds)

16.6.0.6.1. Arguments

« *conds => List of attributes that can be cast to bool

136

boolean or

Similar to the operator | but the values are cast to boolean

env assert eq(or(true, false), true)
env assert eq(or(false, false), false)
env assert eq(or(true, false), false | true)

16.6.0.7. not
env logic.not(cond: 'bool')

16.6.0.7.1. Arguments
e cond: 'bool' => attribute that can be cast to bool
boolean not

Similar to the operator ! but the values are cast to boolean

env assert eq(not(true), false)
env assert eq(not(false), true)
env assert _eq(not(true), !true)
env assert eq(not(false), !false)

(
(
(
(

16.6.0.8. all
env logic.all(vars: '& [bool]"')

16.6.0.8.1. Arguments
* vars: '& [bool]' =>

check if all of the bool are true

env assert eqg(all
env assert eqg(all
env assert eqg(all
env assert eq(all

[true]), true)

[false, truel]), false)
[true, truel]), true)
[false]), false)

—_— o~ o~ —~

137

16.6.0.9. any
env logic.any(vars: '& [bool]"')

16.6.0.9.1. Arguments
* vars: '& [bool]' =>

check if any of the bool are true

env assert eq(any([true]), true)

env assert eq(any([false, truel]), true)
env assert eq(any([false, false]), false)
env assert eq(any([false]), false)

(
(
(
(

16.7. Regex

16.7.0.1. str_filter

env regex.str filter(attrs: 'Vec < String >', pattern: 'Regex')

16.7.0.1.1. Arguments

* attrs: 'Vec < String >' => attribute to check for pattern
* pattern: 'Regex' => Regex pattern to match

Filter from the string list with only the values matching pattern

nA

env assert eq(str filter(["abc", "and", "xyz"], a"), ["abc",

16.7.0.2. str match

env regex.str match(attr: '& str', pattern: 'Regex')

16.7.0.2.1. Arguments

* attr: '& str' => attribute to check for pattern
* pattern: 'Regex' => Regex pattern to match

138

"and"])

Check if the given pattern matches the value or not

You can also use match operator for this

env assert eq(str_match("abc", "~

a"), true)
env assert_eq(str_match("abc", ""a"

, uabcu matCh HAaH)

)
)
16.7.0.3. str_replace

env regex.str_replace(
attr: '& str',
pattern: 'Regex’',
rep: '& str'

16.7.0.3.1. Arguments

* attr: '& str' =>original string
* pattern: 'Regex' => Regex pattern to match
* rep: '& str' =>replacement string

Replace the occurances of the given match

env assert eq(str_replace("abc", "7a", 2), "2bc")
env assert eq(str _replace("abc", "[abc]", 2), "222")

16.7.0.4. str_find
env regex.str find(attr: '& str', pattern: 'Regex')

16.7.0.4.1. Arguments

* attr: '& str' => attribute to check for pattern
* pattern: 'Regex' => Regex pattern to match

Find the given pattern in the value

env assert eq(str_find("abc", "~[ab]"), "a")

139

16.7.0.5. str_find_all

env regex.str find all(attr: '& str', pattern: 'Regex')

16.7.0.5.1. Arguments

* attr: '& str' => attribute to check for pattern
* pattern: 'Regex' => Regex pattern to match

Find all the matches of the given pattern in the value

env assert eq(str find all("abc", "[ab]"), ["a", "b"])

16.7.0.6. str_count

env regex.str count(attr: '& str', pattern: 'Regex')

16.7.0.6.1. Arguments

* attr: '& str' => attribute to check for pattern
* pattern: 'Regex' =>Regex pattern to match

Count the number of matches of given pattern in the string

env assert eq(str_count("abc", "[abl"), 2)

16.7.0.7. str_split

env regex.str split(
attr: '& str',
pattern: 'Regex’,
limit: 'Option < usize >'

16.7.0.7.1. Arguments

* attr: '& str' =>String to split
* pattern: 'Regex' => Regex pattern to split with

140

* limit: 'Option < usize >' => Limit the split to maximum number

Split the string with the given pattern

env assert eq(str_split("abc", "~[ab]"), ["", "bc"])

16.8. Render

16.8.0.1. render

env render.render(
template: '& Template',

safe: 'bool' = false,
**keyval
)
16.8.0.1.1. Arguments

* template: '& Template' => String template to render
* safe: 'bool' = false => if render fails keep it as it is instead of exiting

e **keyval =>
Render the template based on the node attributes

For more details on the template system. Refer to the String Template section of the NADI
book.

env assert _eq(render("abc { x}", x="ab"), "abc ab")
env assert eq(render("abc {x}", x=23), "abc 23")

If safe parameter is true, then it doesn'’t error out even if the variable is not present, and
will just return the original template. By default it errors out if there are any variables in the
template without a value.

env assert eq(render("abc {x}", safe=true), "abc {x}")

141

16.8.1. Node Functions

node render.render(template: '& Template', safe: 'bool' = false)

16.8.1.0.1. Arguments

* template: '& Template' => String template to render
* safe: 'bool' = false => if render fails keep it as it is instead of exiting

Render the template based on the node attributes

For more details on the template system. Refer to the String Template section of the NADI
book.

network load str("a -> b")
node.x = 13
node assert eq(render("abc {x}"), "abc 13")

16.8.2. Network Functions

network render.render(template: '& Template', safe: 'bool' = false)

16.8.2.0.1. Arguments

* template: '& Template' => Path to the template file
* safe: 'bool' = false => if render fails keep it as it is instead of exiting

Render from network attributes

network.x = 13
network assert eq(render("abc {x}"), "abc 13")

16.8.2.1. render_nodes

network render.render nodes(
template: '& Template',
safe: 'bool' = false,
join: '& str' = "\n"

142

16.8.2.1.1. Arguments

* template: '& Template' => Path to the template file
* safe: 'bool' = false => if render fails keep it as it is instead of exiting
* join: '& str' = "\n" =>String to join the render results

Render each node of the network and combine to same variable

network load str("a -> b")
node.x = INDEX + 1
network assert eq(render nodes("abc {x}"), "abc 1\nabc 2")

16.8.2.2. render_template

network render.render template(template: 'PathBuf')

16.8.2.2.1. Arguments
* template: 'PathBuf' => Path to the template file
Render a File template for the nodes in the whole network

Write the file with templates for input variables in the same way you write string templates.
It's useful for markdown files, as the curly braces syntax won't be used for anything else
that way. Do be careful about that. And the program will replace those templates with their
values when you run it with inputs.

It'll repeat the same template for each node and render them. If you want only a portion of
the file repeated for nodes inclose them with lines with ---8<--- on both start and the end.
The lines containing the clip syntax will be ignored, ideally you can put them in comments.

You can also use - --include:<filename>[::line_range] syntax to include afile, the line_range
syntax, if present, should be in the form of start[:increment]:end, you can exclude start or
end to denote the line 1 or last line (e.g. :5is 1:5, and 3: is from line 3 to the end)

16.8.2.2.2. Arguments

* template: Path to the template file
+ outfile [Optional]: Path to save the template file, if none it'll be printed in stdout

143

16.9. Series

16.9.0.1. sr_count

node series.sr_count()

16.9.0.1.1. Arguments
Number of series in the node

16.9.0.2. sr list

node series.sr list()

16.9.0.2.1. Arguments
List all series in the node

16.9.0.3. sr_dtype

node series.sr dtype(name: '& str', safe: 'bool' = false)

16.9.0.3.1. Arguments

* name: '& str' =>Name of the series
* safe: 'bool' = false => Do not error if series does't exist

Type name of the series

16.9.0.4. sr_len

node series.sr len(name: '& str', safe: 'bool' = false)

16.9.0.4.1. Arguments

* name: '& str' =>Name of the series
e safe: 'bool' = false => Do not error if series does't exist

Length of the series

144

16.9.0.5. sr_mean

node series.sr mean(name: '& str')

16.9.0.5.1. Arguments
* name: '& str' =>Name of the series
Type name of the series

16.9.0.6. sr_ sum

node series.sr sum(name: '& str')

16.9.0.6.1. Arguments
* name: '& str' =>Name of the series
Sum of the series

16.9.0.7. set_series

node series.set series(
name: ‘& str',
value: 'Attribute’,
dtype: '& str!

16.9.0.7.1. Arguments

* name: '& str' =>Name of the series to save as
* value: 'Attribute' => Argument to convert to series
* dtype: '& str' =>type

set the following series to the node

16.9.0.8. sr_to_array

node series.sr to array(name: '& str', safe: 'bool' = false)

145

16.9.0.8.1. Arguments

* name: '& str' => Name of the series
* safe: 'bool' = false => Do not error if series does't exist

Make an array from the series

16.10. Table

16.10.0.1. save_csv

network table.save csv(
path: '& Path',
fields: '& [String]',
filter: 'Option < Vec < bool > >'

16.10.0.1.1. Arguments

* path: '& Path' =>
* fields: '& [String]' =>

e filter: 'Option < Vec < bool > >'=
Save CSV

16.10.0.2. table_to_markdown

network table.table to markdown (
table: 'Option < PathBuf >',
template: 'Option < String >',
outfile: 'Option < PathBuf >',
connections: 'Option < String =>'

16.10.0.2.1. Arguments

* table: 'Option < PathBuf >' => Path to the table file

* template: 'Option < String >' => String template for table

* outfile: 'Option < PathBuf >'=> Path to the output file

* connections: 'Option < String >' =>Show connections column or not

146

Render the Table as a rendered markdown

16.10.0.2.2. Error

The function will error out if,

error reading the table file,

error parsing table template,

neither one of table file or table template is provided,

error while rendering markdown (caused by error on rendering cell values from templates)
error while writing to the output file

16.11. Timeseries

16.11.0.1. ts_count

node timeseries.ts count()

16.11.0.1.1. Arguments

Number of timeseries in the node

16.11.0.2. ts_list

node timeseries.ts list()

16.11.0.2.1. Arguments

List all timeseries in the node

16.11.0.3. ts_dtype

node timeseries.ts dtype(name: '& str', safe: 'bool' = false)

16.11.0.3.1. Arguments

name: '& str' =>Name of the timeseries
safe: 'bool' = false => Do not error if timeseries does't exist

Type name of the timeseries

147

16.11.0.4. ts_len

node timeseries.ts len(name: '& str', safe: 'bool' = false)

16.11.0.4.1. Arguments

* name: '& str' =>Name of the timeseries
e safe: 'bool' = false => Do not error if timeseries does't exist

Length of the timeseries

16.11.0.5. ts_print

node timeseries.ts print(
name: '& String',
header: 'bool' = true,
head: 'Option < i64 >'

16.11.0.5.1. Arguments

* name: '& String' => name of the timeseries
* header: 'bool' = true =>show header
* head: 'Option < i64 >' =>number of head rows to show (all by default)

Print the given timeseries values in csv format
16.11.0.5.2. TODO
+ save to file instead of showing with outfile: Option<PathBuf>

16.11.1. Network Functions

network timeseries.ts print csv(
name: 'String’,
head: 'Option < usize >',
nodes: 'Option < HashSet < String > >'

148

16.11.1.0.1. Arguments

* name: 'String' => Name of the timeseries to save
* head: 'Option < usize >'=>number of head rows to show (all by default)
* nodes: 'Option < HashSet < String > >' =>Include only these nodes (all by default)

Save timeseries from all nodes into a single csv file

TODO: error/not on unqual length TODO: error/not on no timeseries, etc... TODO: output to
file: PathBuf

16.11.1.1. series_csv

network timeseries.series csv(
filter: 'Vec < bool >',
outfile: 'PathBuf',
attrs: 'Vec < String >',
series: 'Vec < String >'

16.11.1.1.1. Arguments

e filter: 'Vec < bool >'=

* outfile: 'PathBuf' => Path to the output csv

* attrs: 'Vec < String >' => list of attributes to write
* series: 'Vec < String >' => list of series to write

Write the given nodes to csv with given attributes and series

16.12. Visuals

16.12.0.1. set_nodesize attrs

network visuals.set nodesize attrs(
attrs: '& [f64]",
minsize: 'f64' = 4.0,
maxsize: 'f64' = 12.0

149

16.12.0.1.1. Arguments

* attrs: '& [f64]' => Attribute values to use for size scaling
* minsize: 'f64' = 4.0 =>minimum size of the node
* maxsize: 'f64' = 12.0 =>maximum size of the node

Set the node size of the nodes based on the attribute value

16.12.0.2. svg_save

network visuals.svg save(
outfile: '& Path',
label: 'Template' = Template { original: "{ NAME}", parts: [Var(" NAME", "")1 },
X_spacing: 'u64' = 25,
y spacing: 'u64' = 25,
offset: 'u6d' = 10,
twidth: 'f64' 9.0,
width: 'u64' = 500,
height: 'u64' = 240,
bgcolor: 'Option < String >',
page width: 'Option < u64 ="',
page_height: 'Option < u64 =>'

16.12.0.2.1. Arguments

* outfile: '& Path' =>

* label: 'Template' = Template { original: "{ NAME}", parts: [Var(" NAME", "")] }=>
* X _spacing: 'u64' = 25=>

* y spacing: 'u64' = 25=>

* offset: 'u6d' = 10 =>

* twidth: 'f64' = 9.0 =>in average how many units each text character takes

For auto calculating width of the page since we don't have Cairo
* width: 'u64' = 500 =>

* height: 'u64' = 240 =>

* bgcolor: 'Option < String >'=>

* page _width: 'Option < u64 >'=

* page height: 'Option < u64 >'=>

Exports the network as a svg

150

17. External Plugins

This section showcases the functions from external plugins developed along side the NADI
project due to various reasons.

The plugins listed here can be installed with following steps:

+ clone the repository of external plugins,

« compile it locally with cargo,

* move all generated dynamic libraries to the nadi plugin directory.

17.1. Dams

17.1.0.1. count_node_if
node dams.count node if(count attr: '& str', cond: 'bool')

17.1.0.1.1. Arguments

* count_attr: '& str' =>

* cond: 'bool' =>
Count the number of nodes upstream at each point that satisfies a certain condition

17.1.0.2. min_year
node dams.min year(yearattr: '& str', write var: '& str' = "MIN YEAR")

17.1.0.2.1. Arguments

* yearattr: '& str' =>
* write var: '& str' = "MIN YEAR" =>

Propagate the minimum year downstream

151

17.2. Data Fill

17.2.0.1. load_csv fill

node datafill.load csv_ fill(
name: 'String’,
file: 'Template’,
timefmt: 'String’,
columns: '(String, String)',
method: 'DataFillMethod' = Linear,
dtype: 'String' = "Floats"

17.2.0.1.1. Arguments

* name: 'String' => Name of the timeseries

* file: 'Template' =>Template of the CSV file for the nodes

* timefmt: 'String' => date time format, if you only have date, but have time on format
string, it will panic

¢ columns: '(String, String)' => Names of date column and value column

* method: 'DataFillMethod' = Linear => Method to use for data filling: forward/backward/
linear

* dtype: 'String' = "Floats" => DataType to load into timeseries

17.2.0.2. datafill_experiment

node datafill.datafill experiment(
name: 'String’,
file: 'Template',
ratio var: 'String’,
columns: 'Option < (String, String) >',
experiments: ‘'usize' = 10,
samples: 'usize' = 100

17.2.0.2.1. Arguments

* name: 'String' => Prefix for name of the series to save metrics on

* file: 'Template' =>Template of the CSV file for the nodes

* ratio var: 'String' => Variable to use for inputratio/outputratio methods

¢ columns: 'Option < (String, String) >' => Names of date column and value column

152

* experiments: 'usize' = 10 => Number of experiements to run
* samples: 'usize' = 100 => Number of samples on each experiment

17.2.1. Network Functions

network datafill.save experiments csv(
outfile: 'PathBuf',
attrs: 'Vec < String >',
prefix: 'String',
errors: 'Vec < String >',
filter: 'Option < Vec < bool > >'

17.2.1.0.1. Arguments

* outfile: 'PathBuf' => Path to the output csv

* attrs: 'Vec < String >' => list of attributes to write
* prefix: 'String' => Prefix

s errors: 'Vec < String >' => list of errors to write

e filter: 'Option < Vec < bool > >'=>

Write the given nodes to csv with given attributes and experiment results

17.3. Errors

17.3.0.1. calc_ts_error

node errors.calc ts error(
tsl: '& str',
ts2: '& str',
error: '& str' = "rmse"

17.3.0.1.1. Arguments

e tsl: '& str' => Timeseries value to use as actual value
e ts2: '& str' =>Timeseries value to be used to calculate the error
* error: '& str' = "rmse" => Error type, one of rmse/nrmse/abserr/nse

Calculate Error from two timeseries values in the node

153

It calculates the error between two timeseries values from the node

17.3.0.2. calc_ts_errors

node errors.calc_ts errors(
tsl: '& String',
ts2: '& String',
errors: '& [String]'

17.3.0.2.1. Arguments

* ts1: '& String' => Timeseries value to use as actual value
* ts2: '& String' => Timeseries value to be used to calculate the error
* errors: '& [String]' => Error types to calculate, one of rmse/nrmse/abserr/nse

Calculate Error from two timeseries values in the node
It calculates the error between two timeseries values from the node.

17.3.1. Network Functions

network errors.calc_attr _error(
attrl: 'String’',
attr2: 'String’',
error: 'String' = "rmse"

17.3.1.0.1. Arguments

* attrl: 'String' => Attribute value to use as actual value
* attr2: 'String' => Attribute value to be used to calculate the error
* error: 'String' = "rmse" => Error type, one of rmse/nrmse/abserr/nse

Calculate Error from two attribute values in the network

It calculates the error using two attribute values from all the nodes.

154

17.4. Fancy Print

17.4.0.1. fancy_print
network fancy print.fancy print()

17.4.0.1.1. Arguments

Fancy print a network

17.5. Gnuplot

17.5.0.1. plot_timeseries

network gnuplot.plot timeseries(

csvfile: 'Template',

datecol: '& str',

datacol: '& str',

outfile: '& Path',

timefmt: '& str' = "%Y-%m-%d",

config: '& GnuplotConfig' = GnuplotConfig { outfile: None, terminal: None, csv:
false, preamble: "" },

skip _missing: 'bool' = false

17.5.0.1.1. Arguments

* csvfile: 'Template' =>

* datecol: '& str' =>

* datacol: '& str' =>

* outfile: '& Path' =>

* timefmt: '& str' = "SY-%m-%d" =>

» config: '& GnuplotConfig' = GnuplotConfig { outfile: None, terminal: None, csv: false,
preamble: "" } =>

* skip missing: 'bool' = false =>

Generate a gnuplot file that plots the timeseries data in the network

155

17.6. Graphics

17.6.1. Node Functions

node graphics.attr fraction svg(
attr: '& str',
outfile: '& Template',
color: '& AttrColor',
height: 'f64' = 80.0,
width: 'f64' = 80.0,
margin: 'f64' = 10.0

17.6.1.0.1. Arguments

* attr: '& str' =>

* outfile: '& Template' =>
* color: '& AttrColor' =>
* height: 'f64' = 80.0 =>
* width: 'f64' = 80.0=>

* margin: 'f64' = 10.0 =>

Create a SVG file with the given network structure

17.6.2. Network Functions

network graphics.csv_load ts(
file: 'PathBuf',
name: 'String’,

date col: 'String' = "date",
timefmt: 'String' = "%Y-%m-%d",
data type: 'String' = "Floats"
)
17.6.2.0.1. Arguments

* file: 'PathBuf' =>

* name: 'String' =>

* date col: 'String' = "date" =>
* timefmt: 'String' = "%Y-%m-%d" =>
* data_type: 'String' = "Floats" =>

156

Count the number of na values in CSV file for each nodes in a network
17.6.2.0.2. Arguments

+ file: Input CSV file path to read (should have column with node names for all nodes)

* name: Name of the timeseries

*+ date col: Date Column name

* timefmt: date time format, if you only have date, but have time on format string, it will panic
* data_type: Type of the data to cast into

17.6.2.1. csv_count_na

network graphics.csv_count na(
file: 'PathBuf',
outattr: 'Option < String >',
sort: 'bool' = false,
skip _zero: 'bool' = false,
head: 'Option < i64 >'

17.6.2.1.1. Arguments

e file: 'PathBuf' =>

* outattr: 'Option < String >'=>
* sort: 'bool' = false=>

* skip_zero: 'bool' = false =>

* head: 'Option < i64 >' =
Count the number of na values in CSV file for each nodes in a network
17.6.2.1.2. Arguments

+ file: Input CSV file path to read (should have column with node names for all nodes)
* outattr: Output attribute to save the count of NA to. If empty print to stdout

* sort: show the nodes with larger gaps on top, only applicable while printing

* head: at max show only this number of nodes

* skip_zero: skip nodes with zero missing numbers

157

17.6.2.2. csv_data_blocks_svg

network graphics.csv _data blocks svg(

csvfile: 'PathBuf',

outfile: 'PathBuf',

label: 'Template',

date col: 'String' = "date",

config: 'NetworkPlotConfig' = NetworkPlotConfig { width: 250.0, height: 300.0,
delta x: 20.0, delta y: 20.0, offset: 30.0, radius: 3.0, fontsize: 16.0, fontface:
FontFace { inner: Shared { inner: 0x64a7356cd4c0O } } },

blocks width: 'f64' = 500.0,

fit: 'bool' = false

17.6.2.2.1. Arguments

* csvfile: 'PathBuf' =>

* outfile: 'PathBuf' =>

* label: 'Template' =

* date col: 'String' = "date" =>

« config: 'NetworkPlotConfig' = NetworkPlotConfig { width: 250.0, height: 300.0, delta x:
20.0, delta y: 20.0, offset: 30.0, radius: 3.0, fontsize: 16.0, fontface: FontFace
{ inner: Shared { inner: 0x64a7356cd4cO } } } =>

* blocks width: 'f64' = 500.0 =>

* fit: 'bool' = false =>
Draw the data blocks with arrows in timeline

17.6.2.3. export_svg

network graphics.export svg(

outfile: 'PathBuf',

config: 'NetworkPlotConfig' = NetworkPlotConfig { width: 250.0, height: 300.0,
delta x: 20.0, delta y: 20.0, offset: 30.0, radius: 3.0, fontsize: 16.0, fontface:
FontFace { inner: Shared { inner: 0x64a7356cd4c0O } } },

fit: 'bool' = false,

label: 'Option < Template >',

highlight: '& [usize]' = []

158

17.6.2.3.1. Arguments

* outfile: 'PathBuf' =>

» config: 'NetworkPlotConfig' = NetworkPlotConfig { width: 250.0, height: 300.0, delta x:

20.0, delta y: 20.0, offset: 30.0,
{ inner: Shared { inner: 0x64a7356cd4c0 } } } =>

* fit: 'bool' = false =>
* label: 'Option < Template >' =>
* highlight: '& [usize]' = []=>

Create a SVG file with the given network structure

17.6.2.4. table_to_svg

network graphics.table to svg(
outfile: 'PathBuf',
table: 'Option < PathBuf >',

template: 'Option < String >'

radius:

fontsize:

16.0,

fontface:

FontFace

config: 'NetworkPlotConfig' = NetworkPlotConfig { width: 250.0, height: 300.0,
delta x: 20.0, delta y: 20.0, offset: 30.0, radius: 3.0, fontsize: 16.0, fontface:
FontFace { inner: Shared { inner: 0x64a7356cd4c0 } } },

fit: 'bool' = false,
highlight: '& [String]' = []

17.6.2.4.1. Arguments

* outfile: 'PathBuf' =>
* table: 'Option < PathBuf >'=

* template: 'Option < String >' =

» config: 'NetworkPlotConfig' = NetworkPlotConfig { width: 250.0, height: 300.0, delta x:

20.0, delta y: 20.0, offset: 30.0,
{ inner: Shared { inner: 0x64a7356cd4c0 } } } =>

* fit: 'bool' = false=>

* highlight: '& [String]l' = [] =>

Create a SVG file with the given network structure

radius:

159

fontsize:

16.0,

fontface:

FontFace

17.7. Graphviz

17.7.0.1. save_graphviz

network graphviz.save graphviz(
outfile: '& Path',
name: '& str' = "network",
global attrs: '& str' = "",
node attr: 'Option < & Template >',
edge attr: 'Option < & Template >'

17.7.0.1.1. Arguments

* outfile: '& Path' =>
* name: '& str' = "network" =>

* global_attrs: '& str' = ""=>

* node_attr: 'Option < & Template >' =>

* edge attr: 'Option < & Template >' =>
Save the network as a graphviz file
17.7.0.1.2. Arguments:

* outfile - Path to the output file
* name - Name of the graph

17.8. HTML

17.8.0.1. export_map

network html.export map(

outfile: '& Path',

template: 'Template',

pagetitle: '& str' = "NADI Network",

nodetitle: 'Template' = Template { original: "{ NAME}", parts: [Var(" NAME",
"1}

connections: 'bool' = true

160

17.8.0.1.1. Arguments

* outfile: '& Path' =>
* template: 'Template' =

* pagetitle: '& str' = "NADI Network" =>
* nodetitle: 'Template' = Template { original: "{ NAME}", parts: [Var(" NAME", "")] } =>
* connections: 'bool' = true=>

Exports the network as a HTML map

17.9. GIS

17.9.1. Network Functions

network gis.gis load network(
file: 'PathBuf',
source: 'String',
destination: 'String’,
layer: 'Option < String >',
ignore null: 'bool' = false

17.9.1.0.1. Arguments

* file: 'PathBuf' => GIS file to load (can be any format GDAL can understand)

* source: 'String' => Field in the GIS file corresponding to the input node name

* destination: 'String' => layer of the GIS file corresponding to the output node name
* layer: 'Option < String >' =>layer of the GIS file, first one picked by default

* ignore null: 'bool' = false =>Ignore feature if it has fields with null value

Load network from a GIS file
Loads the network from a gis file containing the edges in fields

17.9.1.1. gis_load_attrs

network gis.gis load attrs(
file: 'PathBuf',
node: 'String',
layer: 'Option < String >',

161

geometry: 'String' = "GEOM",
ignore: 'String' = "",

sanitize: 'bool' = true,
err_no_node: 'bool' = false
)
17.9.1.1.1. Arguments

* file: 'PathBuf' => GIS file to load (can be any format GDAL can understand)
* node: 'String' => Field in the GIS file corresponding to node name

* layer: 'Option < String >' =>layer of the GIS file, first one picked by default
* geometry: 'String' = "GEOM" => Attribute to save the GIS geometry in

* ignore: 'String' = "" => Field names separated by comma, to ignore

* sanitize: 'bool' = true => sanitize the name of the fields

* err_no node: 'bool' = false => Error if all nodes are not found in the GIS file

Load node attributes from a GIS file

The function reads a GIS file in any format (CSV, GPKG, SHP, JSON, etc) and loads their fields
as attributes to the nodes.

17.9.1.2. gis_save_connections

network gis.gis save connections(
file: 'PathBuf',
geometry: 'String’,
driver: 'Option < String >',
layer: 'String' = "network",
filter: 'Option < Vec < bool > >'

17.9.1.2.1. Arguments

* file: 'PathBuf' =>

* geometry: 'String' =>

* driver: 'Option < String >' =
* layer: 'String' = "network" =>

e filter: 'Option < Vec < bool > >'=

Save GIS file of the connections

162

17.9.1.3. gis_save_nodes

network gis.gis save nodes(
file: 'PathBuf',
geometry: 'String',
attrs: 'HashMap < String, String >' = {},
driver: 'Option < String >',
layer: 'String' = "nodes",
filter: 'Option < Vec < bool > >'

17.9.1.3.1. Arguments

* file: 'PathBuf' =>

* geometry: 'String' =

* attrs: 'HashMap < String, String >' = {} =>
* driver: 'Option < String >'=>

* layer: 'String' = "nodes" =>

* filter: 'Option < Vec < bool > >' =>

Save GIS file of the nodes

17.10. Print Node

17.10.0.1. print_node

node print node.print node()

17.10.0.1.1. Arguments
Print the node with its inputs and outputs

17.10.1. Network Functions

network print node.print attr csv(*args)

17.10.1.0.1. Arguments

* *args =>

163

Print the given attributes in csv format with first column with node name

17.11. Streamflow

17.11.0.1. check_negative

node streamflow.check negative(ts name: '& str')

17.11.0.1.1. Arguments
* ts name: '& str' =>Name of the timeseries with streamflow data

Check the given streamflow timeseries for negative values

164

18. Developer Reference

165

18.1. Data Structure

This section will describe the data structures associated with NADI system in brief.

For more accurate and upto date details on the data structures and their available methods.
Look at the API reference of nadi_core on docs.rs.

18.2. Node

Points with attributes and timeseries. These can be any point as long as they'll be on the
network and connection to each other.

The attributes can be any format. There is a special type of attribute timeseries to deal with
timeseries data that has been provided by the system. But users are free to make their own
attributes and plugins + functions that can work with those attributes.

Since attributes are loaded using TOML file, simple attributes can be stored and parsed from
strings, moderately complex ones can be saved as a combination of array and tables, and
more complex ones can be saved in different files and their path can be stored as node
attributes.

Here is an example node attribute file. Here we have string, float, int and boolean values,
as well as a example csv timeseries

stn="smithland"

nat 7910=12335.94850131619
orsanco_7910=16900
lock=true

[ts.csv]
streamflow = {path="data/smithland.csv", datetime="date", data="flow"}

18.3. Network

Collection of Nodes, with Connection information. The connection information is saved in
the nodes itself (=inputs= and =output= variables), but they are assigned from the network.

The nadi system (lit, river system), is designed for the connections between points along
a river. Out of different types of river networks possible, it can only handle non-branching
tributaries system, where each point can have zero to multiple inputs, but can only have one

166

https://docs.rs/nadi_core/latest/nadi_core/
https://docs.rs/nadi_core/latest/nadi_core/

output. Overall the system should have a single output point. There can be branches in the
river itself in the physical sense as long as they converse before the next point of interests.
There cannot be node points that have more than one path to reach another node in the
representative system.

Network file are simple text files with each edge on one line. Node names can be words with
alphanumeric characters with the additional character _, similar to how rust identifiers work.
The Node names can also be quoted strings, in those cases any characters are supported
inside the quotes.

Here is an example network file,

cannelton -> newburgh

newburgh -> evansville
evansville -> "jt-myers"

comments are supported
"jt-myers" -> "old-shawneetown"
"old-shawneetown" -> golconda
markland -> mcalpine

golconda -> smithland

Drawing it out:

Inetwork load file("./data/mississippi.net")
network svg save(
"./output/mississippi.svg",

label="[{INDEX}] { NAME:repl(-,):case(title)}"
)
Inetwork clip()
1# the link path needs to be relative to this file
Inetwork echo("../output/mississippi.svg")

Results:

The program also plans to support the connection import from the DOT format (graphviz
package).

Network file without any connection format can be written as a node per line, but those
network can only call sequential functions, and not input dependent ones.

167

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

Depending on the use cases, it can probably be applied to other systems that are similar
to a river system. Or even without the connection information, the functions that are inde-
pendent to each other can be run in sequential order.

18.4. Timeseries

Timeseries of values, at regular interval. Can support integers, floats, booleans, strings,
Arrays and Tables.

For timeseries that are not in a format that NADI can understand. The path to the timeseries
can be provided as a node attribute and plugin functions can be written to use that path to
load the timeseries for the node.

18.5. String Templates

The templating system will be used by an external library developed by me. The library can
be modified if there are specific needs for this project.

The template system is feature rich, allowing for formatting, simple string transformations,
and airthmatic calculations based on the variables (node attributes in this case). This can
be used to generate file paths, and similar strings based on node attributes, as well as to
format the cell values for exported table, figures, etc.

The template library is also available for Rust, ¢ and c++, but all the interactions with the
templates will be done through the nadi interface, so that is not required.

Documentations on the template system, can be redirected to the string template plus
library page.

Brief explanation on the template system is given below.
18.5.0.1. Template Parts

Templates have variables, time formats, expressions, and commands (disabled by default);

Hi, my name is {name}, my address is {address?"N/A"}.
Current time is {%H} hour %M} minutes.

Results (with: name=John; address=123 Road, USA):

168

https://docs.rs/string-template-plus/latest/string_template_plus/
https://docs.rs/string-template-plus/latest/string_template_plus/
https://docs.rs/string-template-plus/latest/string_template_plus/

Hi, my name is John, my address is 123 Road, USA.
Current time is 21 hour 19 minutes.

18.5.0.2. Optional Variables

Variables can be chained in an optional way, so the first one that's found will be used (e.g.
{nickname?name} will render nickname if it's present, else name);

Hi, I am {nickname?name}, my address is {address?"N/A"}.

Results (with: name=John; nickname=J; address=123 Road, USA):

Hi, I am J, my address is 123 Road, USA.

18.5.0.3. String Literal

Variables when replaced with literal strings (quoted strings), they will be used directly
{address?"N/A"} will render N/A is address is not present;

Hi, I am {nickname?name}, my address is {address?"N/A"}.

Results (with: name=John):

Hi, I am John, my address is N/A.

18.5.0.4. Transformers

Variables can have optional transformers which transform the string based on their rules,
(e.g. float transformer will truncate the float, upcase will make the string UPPERCASE, etc.);

Hi, I am {nickname?name:case(up)}, my address is {address?"N/A"}.

Results (with: name=Joe):

Hi, I am JOE, my address is N/A.

169

18.5.0.5. Time formats

time formats are formatted current time (e.g. {%Y} will become 2024 as of now);

Today is {%B %d} of the year {%Y}.

Results (with: name=John):

Today is July 02 of the year 2025.

18.5.0.6. Lisp Expressions

expressions are lisp expressions that will be evaluated and the results will be used. The lisp
expression can also access any variables and do any supported programming. (e.g. (+ 1 1)
in lisp will become 2);

=(* (+ (st+num 'age) 21) 4).

guess my age(x) if: (x + 21) * 4

Results (with: age=20):

164.

guess my age(x) if: (x + 21) * 4

18.5.0.7. NADI Specific options

Besides the above points, specific to nadi system, any node template will have all the vari-
ables from node attributes available as strings for template. For string variables, their name
can be used to access quoted string format, while their name with underscore prefix will be
unquoted raw string. (e.g. if we have attribute name="smithland", then {name} will render to
"smithland", while { name} will render to smithland).

Nadi system uses templates in a variety of place, and plugin functions also sometimes take
templates for file path, or strings, and such things. Look at the help string of the function
to see if it takes String or Template type.

For example render is a function that takes a template and prints it after rendering it for
each node.

170

Inetwork load file("./data/mississippi.net")
Inode[ohio] set attrs(river="the Ohio River", streamflow=45334.12424343)
node[ohio, red] render(

"(=(+ 1 (st+num 'INDEX))th node) { NAME:case(title)}

River Flow = {streamflow:calc(/10000):f(3)?\"NA\"} x 107°4"

Results:

red = "(5th node) Red\n\tRiver Flow = NA x 1074",
ohio = "(6th node) Ohio\n\tRiver Flow = 4.533 x 10°4"

As seen in above example, you can render variables, transform them, use basic calculations.

Or you can use lisp syntax to do more complex calculations. Refer to Nadi Extension
Capabilities section for more info on how to use lisp on string template.

Inetwork load file("./data/mississippi.net")
Inode[ohio] set attrs(river="the Ohio River", streamflow=45334.12424343)
node[ohio] render(

"{ river:case(title)} Streamflow

from lisp = {=(/ (st+num 'streamflow) 1000):f(2)} x 1073 cfs"

Results:

ohio = "The Ohio River Streamflow\n\tfrom lisp = 45.33 x 1073 cfs"
}

18.5.0.8. Some Complex Examples

Optional variables and a command; note that commands can have variables inside them:
hi there, this {is?a?"test"} for $(echo a simple case {that?} {might} be "possible")

Results (with: might=may):

171

../system/extensions.md
../system/extensions.md

hi there, this test for $(echo a simple case may be possible)

Optional variables with transformers inside command.

Hi {like?a?"test"} for $(this does {work:case(up)} now) (yay)

Results (with: work=Fantastic Job):

Hi test for $(this does FANTASTIC JOB now) (yay)

If you need to use { and } in a template, you can escape them. Following template shows
how LaTeX commands can be generated from templates.

more {formatting?} options on {%F} and
\\latex\{command\}\{with {variable}\}, should work.

Results (with: command=Error;variable=Var):

more options on 2025-07-02 and
\latex{command}{with Var}, should work.

This just combined a lot of different things from above:

let's try {every:f(2)?and?"everything"}
for $(a complex case {that?%F?} {might?be?not?found} be "possible")

see $(some-command --flag "and the value" {problem})

=(+ 1 2 (st+num 'hithere) (st+num "otherhi"))
{otherhi?=(1+ pi):f(4)}

*Error®:;

None of the variables ["might", "be", "not", "found"] found

This shows the error for the first template part that errors out, even if {problem} will also
error later, so while solving for problems in string templates, you might have to give it
multiple tries.

172

18.5.0.9. Advanced String Template with LISP

Nadi Template string is useful when you want to represent node specific string, or file path
in a network. This is not as advanced as the formatted strings in python. But it can be used
for complex situations based on the current functionality.

The most important extension capability of the string template is the embedded lisp system.

As we know, templates can render variables, and have some capacity of transforming them:

{name:case(title):repl(-,)} River Streamflow = {streamflow} cfs

Results (with: name=0hio; streamflow=12000):

Ohio River Streamflow = 12000 cfs

But for numerical operation, the transformers capabilities are limited as they are made for
strings.

With lisp, we can add more logic to our templates.

{name:case(title):repl(-,)} River Streamflow is =(
if (> (st+num 'streamflow) 10000)
'Higher 'Lower

) than the threshold of 1075 cfs.

Results (with: name=0hio; streamflow=12000):

Ohio River Streamflow is Higher than the threshold of 1075 cfs.

The available lisp functions are also limited, but the syntax itself gives us better airthmetic
and logical calculations.

18.5.1. Note

As the template string can get complicated, and the parsing is done through Regex, it is not
perfect. If you come across any parsing problems, please raise an issue at string template
plus github repo.

173

https://github.com/Atreyagaurav/string-template-plus
https://github.com/Atreyagaurav/string-template-plus

18.5.2. Commands

Note that running commands within the templates is disabled for now.

echo today=$(date +%Y-%m-%d) {%Y-%m-%d}

Results (with:):

echo today=$(date +%Y-%m-%d) 2025-07-02

Butif you are writing a command template to run in bash, then it'll be executed as the syntax
is similar.

network command("echo today=$(date +%Y-%m-%d) {%Y-%m-%d}")

Results:

$ echo today=$(date +%Y-%m-%d) 2025-07-02

Here although the $(date +%Y-%m-%d) portion was not rendered on template rendering
process, the command was still valid, and was executed.

18.6. Tables

Tables are data types with headers and the value template. Tables can be rendered/exported
into CSV, JSON, and LaTeX format. Other formats can be added later. Although tables are not
exposed to the plugin system, functions to export different table formats can be written as
a network function.

A sample Table file showing two columns, left aligned name for station in title case, and
right aligned columns for latitude and longitude with float value of 4 digits after decimal:

Inetwork load file("./data/mississippi.net")
<Name => { NAME:repl(-,):case(title)}

~Ind => =(+ (st+num 'INDEX) 1)

>0rder => {ORDER}

~Level => {LEVEL}

174

something is wrong with the set level algorithm
Ohio - tenessee should be level 1, and missouri/yellowstone should be 0

Results:

|[Name|Ind|Order|Level| |:—|:-:|—-:|:—:] |Lower Mississippi|1|7|0| |Upper Mis-
sissippi|2|1]|1| |Missouri|3|1|1| |Arkansas|4|1|1| |Red|5|1|1| |Ohio|6|2|0| |
Tenessee|7]1|0]

Here the part before == is the column header and the part after is the template. Presence of
<or>inthe beginning of the line makes the column left or right aligned, with center aligned

(~) by default.

Exporting the table in svg instead of markdown allows us better network diagram.

Inetwork load file("./data/mississippi.net")
Inetwork echo("../output/example-table2.svg")
<Name => { NAME:repl(-,):case(title)}

~Ind => =(+ (st+num 'INDEX) 1)

>0rder => {ORDER}

~Level => {LEVEL}

Error:
network function: "table to svg" not found
A SVG Table can also be generated using the table file, using the task system like this:

Inetwork load file("./data/mississippi.net")
network table to svg(

table = "./data/sample.table",
either table = "path/to/table", or template = "table template"
outfile = "./output/example-table.svg",

config = {fontsize = 16, delta y = 20, fontface="Noto Serif"}

)
Inetwork clip()
1# the link path needs to be relative to this file

Inetwork echo("../output/example-table.svg")

Error:

175

network function: "table to svg" not found

18.7. File Templates

File templates are templates that use string templates, but they are a whole file that can be
used to generate rendered text files.

File templates also have sections which can be repeated for different nodes, with corre-
sponding syntax.

Following template will render a markdown table with headers and all the name and index
of the nodes.

| Node | Index |

<l-- --- 8<--- -- >
| { NAME} | {INDEX} |
<l-- --- 8<--- -- >

18.8. Tasks

Task is a function call that the system performs. The function call can be a node function
or a network function. The function can have arguments and keyword arguments that can
determine its functionality. Node functions will be called on a node at a time, while the
network function will be called with the whole network at once.

Currently tasks are performed one after another. The functions that any task can use can be
internal functions provided by the library or the external functions provided by the plugins.

A sample tasks file is shown below:

node print attrs()
network save graphviz("/tmp/test.gv", offset=1.3, url="{ NAME}")
node savedss (
"natural",
"test.dss",
"/0HIO-RIVER/{ NAME}/01Jan1994/01Jan2012/1Day/NATURAL/"
)
node check sf("sf")

176

node.inputsfirst route sf("observed")
node render("Node {NAME} at index {INDEX}")

Here each line corresponds to one task. And if it's a node task, then it'll be called for each
node (in sequential order by default). The last line node. inputsfirst will call that function in
input node before the current node. Those functions can only be called for network with an
output node.

Please note that although the string in the examples are highlighted as if they are string
templates for readability. Those are just normal strings that functions take as inputs.
Whether they are used as template or not depends on the individual function, refer to their
help to see if they take Template type or String type.

18.9. Node Functions

Node functions are functions that take a node, and the function context to do some opera-
tions on it. They take mutable reference to the node, hence can read all node attributes,
inputs, outputs, their attributes and timeseries.

Node functions can be run from the system for all the nodes in the network in different
orders.

Currently the task system only supports running node functions for all nodes in the following
6 ways,

+ Sequential order,

* Reverse order,

* Run input nodes before the current node (recursively),

* Run output node before the current node (recursively),

¢ Run alist of nodes, and

* Run on a path between two nodes (inclusive).

Depending on the way the function works, it might be required to be run in a particular order.
For example, a function that counts the number of dams upstream of each point, might
have to be run inputs first, so that you can cumulate the number as you move downstream.

18.10. Network Functions

Network functions are functions that take the network as a mutable reference and run on it.

177

Some examples of network functions:

+ List all the networks with their inputs/outputs,

+ Checks if any nodes have some attribute larger than their output,

+ Export the node attributes as a single CSV file,

* Export the nodes in LaTeX file using Tikz to draw the network,

+ Calculate rmse,mse,etc errors between two attribute values for all nodes,

* Generate an interactive HTML/PDF with network information and some other template,
etc.

178

19. Developer Notes and Future Direction

179

19.1. Developer Notes

This section contains my notes as I develop the NADI system. Kind of like a dev blog.

The software package will consists of multiple components. It is planned to be designed in
such a way that users can add their functionality and extend it with ease.

Along with the Free and Open Source Software (FOSS) principles, the plugin system will
make extension of the software functionality and sharing between users. As well as a way
to develop in-house functionality for niche use cases.

19.1.1. Motivation

As Hydrologist, we often deal with the data related to the points in the river. Since most
of the analysis requires doing the same things in multiple points, the initial phase of data
cleaning process can be automated.

We spend a beginning phases of all projects preparing the data for analysis. And combining
the time spent on visualizing the data, it's a significant chunk of our time.

Data visualization influences the decision making from the stakeholders. And can save time
by making any problems obvious from the very beginning. For examples, things like showing
the quality of data (continuity for time series), interactive plots to compare data in different
locations/formats, etc can help people understand their data better.

Besides plot, the example below shows how simply adding a column with connection visual
can immediately make it easier to understand the relationship between the data points in
a river. Without it people need to be familiar with the names of the data points and their
location, or consult a different image/map to understand the relationship.

Table with Connection Information

The inspiration on making this software package comes from many years of struggle with
doing the same thing again and again in different projects like these. And the motivation to
make something generic that can be used for plethora of projects in the future.

19.1.2. Why Rust?

RustAfn1 is an open source programming language that claims to be fast and memory
efficient to power performance critical services. Rust is also able to integrate with other
programming languages.

180

Rust provides a memory safe way to do modern programming. The White House has a
recent press release/fn2 about the need to have memory safe language in future softwares.
The report~Afn3 has following sentense about the Rust language.

The results of the survey from stackoverflow~Afn4 shows Rust has been a top choice for
developers who want to use a new technology for the past 8 years, and the analysis also
shows Rust is a language that generates for desire to use it once you get to know.

19.1.3. Plugin System Experiments

181

19.2. Writing this Book

I'm used to emacs’s org-mode, where you can evaluate code and show output and all those
things. Like markdown in steroids.

mdbook seems to have some of those functionality in it as well. Though I think emacs's
extension through elisp is lot more flexible and easier to extend. mdbook supporting custom
preprocessors and renderer means we can extend it as well.

In the process of writing this book. I made the following things.
19.2.0.1. Syntax Highlight for NADI specific syntax

mdbook Uses highlight.js to syntax highlight the code blocks in it. And since nadi system has
a lot of its own syntax for string templates, task system, table system, network system etc.
I wanted syntax highlight for those things. Although the attribute files are subset of ToML
format, so we have syntax highlight for it. Everything else needed a custom code.

Following the comments in this github issue led me to find a workaround for the custom
syntax hightlight. I don’t know for how long it will work, but this works well for now.

Basically I am using the custom JS feature of mdbook like:

[output.html]
additional-js = ["theme/syntax-highlight.js"]

To insert custom highlight syntax. For example adding the syntax highlight for network text
is:

hljs.registerLanguage("network", (hljs) => ({
name: "Network",
aliases: ['net'],
contains: [
hljs.QUOTE_STRING MODE,
hljs.HASH COMMENT MODE,

{
scope: "meta",
begin: '->',
className: "built in",
b

182

https://github.com/rust-lang/mdBook/issues/657

]
1)

The syntax for network is really simple, for others (task, table, string-template, etc) refer to
the theme/syntax-highlight.js file in the repository for this book.

After registering all the languages, you re-initialize the highlight.js:

hljs.initHighlightingOnLoad();

19.2.0.2. mdbook-nadi preprocessor

Instead of just showing the syntax of how to use the task system, I wanted to also show the
output of the examples for readers. So I started this with writing some elisp code to run the
text in selection and then copying the output to clipboard that I could paste in output block.
It was really easy in emacs.

Following code takes the selection, saves them in temporary tasks file, runs them and then
puts the output in the clipboard that I can paste manually.

(defun nadi-run-tasks (BEG END)

(interactive "r")

(let ((tasks-file (make-temp-file "tasks-")))
(write-region BEG END tasks-file)
(let ((output '(shell-command-to-string (format "nadi %s" tasks-file))))
(message output)
(kill-new output)
(delete-file tasks-file))))

But this is manual process with a bit of automation. So I wanted a better solution, and that's
where the mdbook preprocessor comes in.

With the mdbook-nadi preprocessor, I can extract the code blocks, run it, and insert the
contents just below the code block as output.

Once I had a working prototype for this, I also started adding support for rendering string
templates, and generating tables along with the task system.

183

19.2.0.2.1. String templates

For string templates, write the templates in stp blocks like below that will have the syntax
hightlight.

Hi my name is {name}.

If you add run into it, it'll run the template with any key=val pairs provided after run.

Basically writing the following in the mdbook markdown:

stp run name=John Hi my name is {name}.

Will become:

Hi my name is {name}.

Results (with: name=John):

Hi my name is John.

For tasks, similary write a block with task as language. You can use ! character at the start
of the line to hide it in the view. Use them for essential code that are needed for results but
are not the current focus. And when you add run it'll run and show the output.

184

task run Inetwork load_file(“data/mississippi.net”) node render(“Node {NAME}")

Inetwork load file("data/mississippi.net")
node render("Node {NAME}")

Results:

lower-mississippi = "Node \"lower-mississippi\"",
upper-mississippi = "Node \"upper-mississippi\"",
missouri = "Node \"missouri\"",

arkansas = "Node \"arkansas\"",

red = "Node \"red\"",

ohio = "Node \"ohio\"",

tenessee = "Node \"tenessee\""

The implementation for tables are little weird right now, but it works. Since we need to be
able to load network, and perform actions before showing a table.

So the current implementation takes the hidden lines using tand runs them as task system,
with additional task of rendering the table at the end.

Example:

run markdown

Inetwork load file("./data/mississippi.net")
<Name => { NAME:repl(-,):case(title)}

~Ind => =(+ (st+num 'INDEX) 1)

>0rder => {ORDER}

185

Becomes:

Inetwork load file("./data/mississippi.net")
<Name => { NAME:repl(-,):case(title)}

~Ind => =(+ (st+num 'INDEX) 1)

>0rder => {ORDER}

Results:

|Name | Ind|Order|
[e---]:-2]----1]

| Lower Mississippi|1]7|
|Upper Mississippi|2]|1]|
|[Missouri|3|1]
|Arkansas|4|1]
|Red|5]|1]

|Ohio|6]2]|

| Tenessee|7|1]

I'd like to refine this further.

Task can be used to generate markdown in the same way as the tables can:

For example task run of this:

network load file("./data/mississippi.net")
network table to markdown(template="

<Name => { NAME:repl(-,):case(title)}
~Ind => =(+ (st+num 'INDEX) 1)

>0rder => {ORDER}

II)

Results:
| Name | Ind | Order
R P [e---:]------ i
| Lower Mississippi | 1 | 7 |

186

Upper Mississippi
Missouri

Arkansas

Red

Ohio

Tenessee

N o U WwN
P N R B B

If you do task run markdown then:

network load file("./data/mississippi.net")
network table to markdown(template="

<Name => { NAME:repl(-,):case(title)}

~Ind => =(+ (st+num 'INDEX) 1)

>0rder => {ORDER}

")

Results:

|Name | Ind|Order|
[e---]i-2]----1]

| Lower Mississippi|1]|7|
|Upper Mississippi|2|1|
|[Missouri|3|1]
|Arkansas|4|1]
|[Red|5]1]

|Ohio|6]2]|

| Tenessee|7|1]

Which means it can be used for other things:

network load file("./data/mississippi.net");

network echo("**Details about the Nodes:**")

network echo(render _nodes("

=(+ (st+num 'INDEX) 1). { NAME:repl(-,):case(title)} River
"))

Results:
Details about the Nodes:

1. Lower Mississippi River

187

2. Upper Mississippi River
3. Missouri River

4. Arkansas River

5. Red River

6. Ohio River

7. Tenessee River

You can also use the same method to insert images like this, at the end of your tasks, so
that the image generated by the tasks can be inserted here.

do some tasks

network echo("Some other output form your tasks")
network clip()

network echo("../images/ohio-low.svg")

Results:

188

20. Future Ideas to Implement

20.0.1. Optimization Algorithms

We can have input variables to change, and output variables to optimize, but how do we
take what function to run to calculate the output variable...

One simple idea can be to take a command template to run. So we will change the input
variables, run the command for each node or network, and then that command will update
the output variable that we can optimize for.

We might require an option to call other functions in this case. Then maybe we can just pass
the name of the function.

Complex idea could be to add the support for loop syntax in task system.

20.1. Interactive Plots

An experiment using the cairo graphics library shows that a PDF can be directly produced
without using LaTeX as intermediate using the network information. This functionality —
although not as complete as the one in the example — has been exposed as an internal
network function for now. Further functionality related to this idea can be embedding
network information in simple plots, or generate the whole plot along side the network
information.

It might be a good idea to make several functions that can export the interactive plots in
LaTeX, PDF, PNG, SVG, HTML, etc. separately instead of single format.

LaTeX and HTML will be easier due to text nature, for others I might have to spend time with
some more experimentation on cairo.

189

	Preface
	Acknowledgements
	Funding

	Why NADI?
	Why use NADI System?
	Network Based Data Analysis
	Task System
	Extensibility

	Who this book is for
	How to use this book
	Code Blocks
	String Template Syntax Highlight

	How to Cite
	Journal Papers: TODO
	This book
	Works using Nadi System

	Nadi System Setup
	Introduction
	NADI GIS
	NADI Task System
	NADI Plugins
	NADI libraries
	Rust Libraries
	NADI Python

	NADI CLI
	NADI IDE
	Text Editor
	Terminal
	Function Help
	Network Viewer
	Attribute Browser
	SVG Viewer

	Trivia

	Installation
	Packages
	Downloading Binaries
	Building from Source
	Prerequisites
	NADI System
	NADI GIS
	Windows
	Linux and Mac
	QGIS Plugin
	Nadi GIS Plugin

	Nadi Plugins

	Plugins
	Compiled Plugins
	Executable Plugins

	Network Detection
	Nadi GIS
	NADI QGIS

	Example
	Using QGIS Plugin
	Using CLI
	Download data

	Network Analysis
	Core Concepts
	Keywords

	Task
	Attributes
	Node
	Network
	Expression
	Literal Values
	Variable
	Unary Operator
	Binary Operator
	If Else
	Function

	String Template
	Node Function
	Selective Execution
	Inverse Order

	List of Nodes
	Path of Nodes

	Network Function
	Cross Context Functions and Variables
	Env and Network Variables/Functions
	Node Variables/Functions

	Plugins
	Further Reading

	Learn by Examples
	Attributes
	Control Flow
	Conditional (If-Else) Blocks
	While Loop

	Connections
	Default is Empty Network
	Loading Network from String
	Loading Network from a File
	Modifying the network

	Counting Nodes
	Cumulative Sum
	Import Export Files
	GIS Files

	String Templates

	Nadi Extension Capabilities
	List of All Functions
	Env Functions
	Node Functions
	Network Functions

	Python Library
	Nadi Py
	Combining the power of python and Task System

	Differences with Task System
	Example 1: looping through the nodes
	Example 2: Skip execution when variable is absent

	Plugins
	Example without using nadi-py
	Example using nadi-py

	Examples

	Plugin Developer Guide
	Executable Plugins
	Python
	RScript

	Compiled Plugins
	Internal Plugins
	External Plugins
	Steps to create a Plugin

	Functions
	Function Types
	Function Arguments
	Return Types
	Verbosity
	Examples

	Environment Functions
	Node Functions
	Network Functions

	User Reference
	Example Usage
	Ohio River Streamflow Routing Project
	Making Tables
	Generating Reports
	Analysing Timeseries
	Looking at Data Gaps

	Visualizing Data Gaps

	Internal Plugins
	Attributes
	strmap
	Arguments

	parse_attr
	Arguments

	parse_attrmap
	Arguments

	get
	Arguments

	powi
	Arguments

	powf
	Arguments

	exp
	Arguments

	sqrt
	Arguments

	log
	Arguments

	float_div
	Arguments

	float_mult
	Arguments

	Node Functions
	Arguments
	Arguments
	Errors
	print_all_attrs
	Arguments

	print_attrs
	Arguments
	Arguments
	Error

	set_attrs
	Arguments
	Error
	Example

	get_attr
	Arguments

	has_attr
	Arguments

	first_attr
	Arguments

	set_attrs_ifelse
	Arguments

	set_attrs_render
	Arguments

	load_toml_render
	Arguments

	Network Functions
	Arguments
	Arguments
	set_attrs_render
	Arguments

	Command
	command
	Arguments
	Errors

	run
	Arguments

	Network Functions
	Arguments
	command
	Arguments

	Connections
	load_file
	Arguments

	load_str
	Arguments

	load_edges
	Arguments

	subset
	Arguments

	save_file
	Arguments

	Core
	count
	Arguments

	type_name
	Arguments

	isna
	Arguments

	isinf
	Arguments

	float
	Arguments

	str
	Arguments

	int
	Arguments

	array
	Arguments

	attrmap
	Arguments

	json
	Arguments

	append
	Arguments

	length
	Arguments

	year
	Arguments

	month
	Arguments

	day
	Arguments

	min_num
	Arguments

	max_num
	Arguments

	min
	Arguments

	max
	Arguments

	sum
	Arguments

	prod
	Arguments

	unique_str
	Arguments

	count_str
	Arguments

	concat
	Arguments

	range
	Arguments

	assert
	Arguments

	assert_eq
	Arguments

	assert_neq
	Arguments

	Node Functions
	Arguments
	inputs_attr
	Arguments

	has_outlet
	Arguments

	output_attr
	Arguments

	Network Functions
	Arguments
	outlet
	Arguments

	node_attr
	Arguments

	Debug
	sleep
	Arguments

	debug
	Arguments

	echo
	Arguments

	clip
	Arguments
	Example

	Logic
	ifelse
	Arguments

	gt
	Arguments

	lt
	Arguments

	eq
	Arguments

	and
	Arguments

	or
	Arguments

	not
	Arguments

	all
	Arguments

	any
	Arguments

	Regex
	str_filter
	Arguments

	str_match
	Arguments

	str_replace
	Arguments

	str_find
	Arguments

	str_find_all
	Arguments

	str_count
	Arguments

	str_split
	Arguments

	Render
	render
	Arguments

	Node Functions
	Arguments

	Network Functions
	Arguments
	render_nodes
	Arguments

	render_template
	Arguments
	Arguments

	Series
	sr_count
	Arguments

	sr_list
	Arguments

	sr_dtype
	Arguments

	sr_len
	Arguments

	sr_mean
	Arguments

	sr_sum
	Arguments

	set_series
	Arguments

	sr_to_array
	Arguments

	Table
	save_csv
	Arguments

	table_to_markdown
	Arguments
	Error

	Timeseries
	ts_count
	Arguments

	ts_list
	Arguments

	ts_dtype
	Arguments

	ts_len
	Arguments

	ts_print
	Arguments
	TODO

	Network Functions
	Arguments
	series_csv
	Arguments

	Visuals
	set_nodesize_attrs
	Arguments

	svg_save
	Arguments

	External Plugins
	Dams
	count_node_if
	Arguments

	min_year
	Arguments

	Data Fill
	load_csv_fill
	Arguments

	datafill_experiment
	Arguments

	Network Functions
	Arguments

	Errors
	calc_ts_error
	Arguments

	calc_ts_errors
	Arguments

	Network Functions
	Arguments

	Fancy Print
	fancy_print
	Arguments

	Gnuplot
	plot_timeseries
	Arguments

	Graphics
	Node Functions
	Arguments

	Network Functions
	Arguments
	Arguments
	csv_count_na
	Arguments
	Arguments

	csv_data_blocks_svg
	Arguments

	export_svg
	Arguments

	table_to_svg
	Arguments

	Graphviz
	save_graphviz
	Arguments
	Arguments:

	HTML
	export_map
	Arguments

	GIS
	Network Functions
	Arguments
	gis_load_attrs
	Arguments

	gis_save_connections
	Arguments

	gis_save_nodes
	Arguments

	Print Node
	print_node
	Arguments

	Network Functions
	Arguments

	Streamflow
	check_negative
	Arguments

	Developer Reference
	Data Structure
	Node
	Network
	Timeseries
	String Templates
	Template Parts
	Optional Variables
	String Literal
	Transformers
	Time formats
	Lisp Expressions
	NADI Specific options
	Some Complex Examples
	Advanced String Template with LISP
	Note
	Commands

	Tables
	File Templates
	Tasks
	Node Functions
	Network Functions

	Developer Notes and Future Direction
	Developer Notes
	Motivation
	Why Rust?
	Plugin System Experiments

	Writing this Book
	Syntax Highlight for NADI specific syntax
	mdbook-nadi preprocessor
	String templates

	Future Ideas to Implement
	Optimization Algorithms
	Interactive Plots

